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Abstract
Recent advances in polyhedral compilation technology have made
it feasible to automatically transform affine sequential loop nests
for tiled parallel execution on multi-core processors. However, for
multi-statement input programs with statements of different di-
mensionalities, such as Cholesky or LU decomposition, the par-
allel tiled code generated by existing automatic parallelization ap-
proaches may suffer from significant load imbalance, resulting in
poor scalability on multi-core systems. In this paper, we develop
a completely automatic parallelization approach for transforming
input affine sequential codes into efficient parallel codes that can
be executed on a multi-core system in a load-balanced manner. In
our approach, we employ a compile-time technique that enables
dynamic extraction of inter-tile dependences at run-time, and dy-
namic scheduling of the parallel tiles on the processor cores for
improved scalable execution. Our approach obviates the need for
programmer intervention and re-writing of existing algorithms for
efficient parallel execution on multi-cores. We demonstrate the use-
fulness of our approach through comparisons using linear algebra
computations: LU and Cholesky decomposition.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers, Run-time envi-
ronments, Optimization

General Terms Algorithms, Performance

Keywords Compile-time optimization, Dynamic scheduling, Run-
time optimization

1. Introduction
The ubiquity of multi-core processors has brought parallel comput-
ing squarely into the mainstream. Unlike the past, when the devel-
opment of parallel programs was primarily a task undertaken by a
small cadre of expert programmers, it is now essential to develop
parallel implementations of a large number of existing sequential
codes. Therefore support from compilers and run-time systems for
the development of parallel applications for multi-cores will be ex-
tremely important.

The starting point of the work reported in this paper is Pluto, a
recently developed automatic parallelization system for multi-cores
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[34, 8, 7, 9, 6]. The key to Pluto’s approach is the use of the polyhe-
dral model [3, 36, 29, 25, 20, 37, 4] for representing dependences
and transformations. The polyhedral model provides a powerful
abstraction to reason about transformations of collections of loop
nests by viewing dynamic instances (iterations) of each statement
as integer points in a well-defined space called the statement’s poly-
tope. With such a representation for each statement and a precise
characterization of inter or intra-statement dependences, it is pos-
sible to reason about the correctness of complex loop transforma-
tions in a completely mathematical setting using machinery from
linear algebra and linear programming. With the conventional ab-
stractions for data dependences used in most optimizing compilers
(including gcc and all vendor compilers), it is extremely difficult to
perform integrated model-driven optimization using key loop trans-
formations like permutation, skewing, tiling, unrolling, and fusion
across multiple loop nests.

Given input sequential code, Pluto can automatically gener-
ate parallel OpenMP code for multi-core processors and locality-
optimized tiled code for sequential execution. Even for imperfectly
nested multi-statement codes such as Cholesky decomposition or
LU decomposition, Pluto can automatically generate tiled paral-
lel programs with a parallel tiled execution structure similar to
that found in LAPACK routines. However, as highlighted in re-
cent work at the University of Tennessee [18, 12, 11], the LA-
PACK codes for several linear algebra functions exhibit loss of
efficiency on multi-core systems due to excessively constraining
inter-task barrier synchronization. This problem is being addressed
by Dongarra’s group’s PLASMA (Parallel Linear Algebra for Scal-
able Multi-core Architectures) project [33], by developing a run-
time scheduling framework and manual rewriting of LAPACK rou-
tines to use dynamic scheduling for improved scalability. The main
problem addressed in this paper is the following: Can we develop
a completely automatic parallelization approach that can transform
input sequential codes (with affine dependences) for asynchronous,
load-balanced parallel execution?

We propose a novel technique that solves this key problem for
Pluto’s compile-time parallelization approach, and as a result sig-
nificantly improves load-balance for execution on multi-core sys-
tems. In particular, we develop a compile-time approach to enable
run-time extraction of inter-tile data dependences, and subsequent
dynamic scheduling of tiles on to processor cores. To the best of
our knowledge, this is the first work to develop an automatic paral-
lelization approach with compile-time generation of code to be exe-
cuted at run-time to extract inter-task dependences that are used for
dynamic scheduling and load balancing. The proposed technique
could potentially be applied to other parallelization approaches
based on the polyhedral model, and could eliminate a fundamen-
tal weakness of these purely-compile-time approaches with respect
to load imbalance and resource under-utilization.
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The rest of the paper is organized as follows. Section 2 in-
troduces the polyhedral model for representing programs, depen-
dences, and transformations. Section 3 presents our novel ap-
proach for generating effective parallel tiled code through dynamic
scheduling of tasks in a multi-core system. The performance im-
provements achieved using this approach are illustrated in Sec-
tion 4. We discuss related work in Section 5 and conclude in Sec-
tion 6.

2. Background
There has been significant progress over the last two decades in
the development of powerful compiler frameworks for depen-
dence analysis and transformation of loop computations with affine
bounds and affine array access functions [3, 36, 29, 25, 19, 37, 4].
Such program regions are typically the most computation-intensive
components of scientific and engineering applications, and they
appear often in important real-world code [5]. For such regular
code, compile-time optimization approaches have been developed
using a polyhedral abstraction of programs and dependences. Al-
though the polyhedral model of dependence abstraction and pro-
gram transformation is much more powerful than the traditional
models currently used in production optimizing compilers, early
polyhedral approaches were not practically efficient. Recent ad-
vances in code generation [37, 4, 46] have addressed many of
these issues, resulting in polyhedral techniques being applied to
codes representative of real applications such as the spec2000fp
benchmarks. CLooG [4, 15] is a powerful state-of-the-art code
generator that captures most of these advances. Building on these
developments, we have developed the Pluto compiler framework
that enables end-to-end automatic parallelization and locality opti-
mization of affine programs for general-purpose multi-core targets
[8, 7, 9, 6]. The effectiveness of this transformation system has
been demonstrated on a number of non-trivial application kernels
for multi-core processors, and the entire system implementation is
publicly available [34].

This section provides background information on the polyhedral
model together with a brief overview of Pluto.

2.1 Overview of Polyhedral Model
A hyperplane is an n − 1 dimensional affine subspace of an n-
dimensional space and can be represented by an affine equality. A
halfspace consists of all points of an n-dimensional space that lie
on one side of a hyperplane (including the hyperplane); it can be
represented by an affine inequality. A polyhedron is the intersection
of finitely many halfspaces. A polytope is a bounded polyhedron.

In the polyhedral model, a statement s surrounded by m loops
is represented by an m-dimensional polytope, referred to as an it-
eration space polytope. The coordinates of a point in the polytope
(referred to as the iteration vector ~is) correspond to the values of
the loop indices of the surrounding loops, starting from the outer-
most one. In this work we focus on regular programs where loop
bounds are affine functions of outer loop indices and global param-
eters (e.g., problem sizes). Similarly, array access functions are also
affine functions of loop indices and global parameters. Hence the
iteration space polytope Ds can be defined by a system of affine in-
equalities derived from the bounds of the loops surrounding s. Each
point of the polytope corresponds to an instance of statement s in
program execution. Using matrix representation to express systems
of affine inequalities, the iteration space polytope is defined by

Ds.





~is
~n
1



 ≥~0

where Ds is a matrix representing loop bound constraints and~n is a
vector of global parameters.

Affine array access functions can also be represented using
matrices. If a[Fras(~is)] is the rth reference to an array a in statement
s with a corresponding iteration vector ~is, then

Fras(~is) = Fras.





~is
~n
1





where Fras is a matrix representing an affine mapping from the
iteration space of statement s to the data space of array a. Each
row in the matrix defines a mapping corresponding to a dimension
of the data space.

Example. Consider the code in Figure 1(a). The iteration space
polytope of statement Q is defined by {i, j | 0 ≤ i ≤ N−1 ∧ 0 ≤
j ≤ N −1}. In matrix representation, this polytope is given by







1 0 0 0
−1 0 1 −1

0 1 0 0
0 −1 1 −1






.





~iQ
N
1



 ≥~0

where ~iQ =
( i

j
)

is the iteration vector of statement Q. The access
function of the reference to array a in statement Q is represented as

F1aQ(~iQ) =

(

0 1 0 0
1 0 0 0

)

.





~iQ
N
1





One of the key transformations for such affine code is tiling.
When tiling is performed, in the tiled iteration space, statement in-
stances are represented by higher dimensional statement polytopes
involving supernode iterators and intra-tile iterators. The code in
Figure 1(b) represents the tiled version of the code in Figure 1(a).
The original iteration space and the transformed iteration space are
illustrated in Figure 1(c).

Dependences. There has been a significant body of work on
dependence analysis in the polyhedral model [19, 36, 47]. An in-
stance of statement s, corresponding to iteration vector ~is within
iteration domain Ds, depends on an instance of statement t (with it-
eration vector~it in domain Dt ), if (1)~is and~it are valid points in the
corresponding iteration space polytopes, (2) they access the same
memory location, and (3) ~is is executed before ~it . Since array ac-
cesses are assumed to be affine functions of loop indices and global
parameters, the constraint that defines conflicting accesses of mem-
ory locations can be represented by an affine equality (obtained by
equating the array access functions in source and target statement
instances). Hence all constraints to capture a data dependence can
be represented as a system of affine inequalities/equalities with a
corresponding polytope (referred to as a dependence polytope). The
dependence polytope is defined by





Ds 0
0 Dt

−Id H



 .









~is
~it
~n
1









(

≥~0
=~0

)

where Id represents an identity matrix, and H (referred to as the
h-transformation of the dependence) relates the target statement
instance to a source statement instance that last accessed the con-
flicting memory location:

H.





~it
~n
1



 =





~is
~n
1





Schedules. Using the polyhedral model to find (affine) program
transformations has been widely used for improvement of sequen-
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for ( i=0; i<N;i++) {
P: x[ i ]=0;
for ( j=0; j<N;j++)

Q: x[ i]+=a[j ][ i ]∗y[ j ];
}

(a) Original code

Dorig
Q .







i
j

N
1






≥~0 Dtiled

Q .















it
jt
i
j

N
1















≥~0

(c) Original and tiled iteration space

for ( it =0; it <=floord(N−1,32);it++) {
for ( jt =0; jt <=floord(N−1,32);jt++) {

if ( jt == 0) {
for ( i=max(32∗it ,0); i<=min(32∗it+31,N−1); i++) {

P: x[ i ]=0;
Q: x[ i]=x[ i]+a [0][ i ]∗y [0];

}
}
for ( i=max(32∗it ,0); i<=min(32∗it+31,N−1); i++) {

for ( j=max(32∗jt ,1); j<=min(32∗jt+31,N−1);j++) {
Q: x[ i]=x[ i ]+a[ j ][ i ]∗y[ j ];

}
}

}
}

(b) Tiled code

Figure 1. Transpose matrix vector multiply (tmv) kernel

tial programs (source-to-source transformation) as well as auto-
matic parallelization of programs [20, 29, 25, 22, 25, 8]. An affine
transformation of a statement s is defined as an affine mapping that
maps an instance of s in the original program to an instance in the
transformed program. The affine mapping function of a statement s
is given by

φs(~is) = Cs.





~is
~n
1





When Cs is a row vector, the affine mapping φs is a one-dimensional
mapping. An m-dimensional mapping can be represented as a com-
bination of m (linearly independent) one-dimensional mappings, in
which case Cs is a matrix with m rows. An affine transformation is
valid only if it preserves the dependences in the original program.
A number of different approaches have been defined for construct-
ing such mappings. For example, Feautrier [20, 21] defines affine
time schedule, which is one-dimensional (single sequential loop in
the transformed program) or multi-dimensional (nested sequential
loops in the program). The schedule associates a timestamp to each
statement instance. Instances are executed in increasing order of
timestamps to preserve data dependences. Two statement instances
that have the same timestamp can be executed in parallel.

2.2 PLUTO
Pluto [34] is a state-of-the-art automatic parallelization system
that optimizes sequences of imperfectly nested loops, simultane-
ously for parallelism and locality, through tiling transformations.
Given an input sequential code, it can automatically generate tiled
parallel OpenMP code for multi-core processors. As a first step,
the input program is run through a scanner and parser that con-
structs an abstract syntax tree. Polytopes are then extracted from
the source code. After analyzing the dependences, communication-
minimal and locality-optimized tiling transformations are deter-
mined through Pluto’s transformation framework. Then suitable in-
put, in the form of description of all statements, together with their
iteration spaces (as polytopes) as well as the transformations (as
scheduling functions) specifying the new execution order for each
statement instance, is fed to the CLooG code generator [4, 15]. The
union of all input iteration space polytopes is scanned by CLooG
according to the specified scheduling functions, in order to generate
loop nests in the target program that execute the statement instances
in this new execution order. Loops that are determined by Pluto to
be parallel are translated with appropriate OpenMP directives for
parallelism.

3. Approach for Compiler-Assisted Dynamic
Scheduling

Recent work at the University of Tennessee [18, 12, 11] with LA-
PACK codes for several linear algebra functions highlights two key
challenges for effective parallelization of such codes. First, effec-
tive use of modern multi-core hardware requires the introduction
of tasks that operate on small portions of data in order to im-
prove data locality. For affine code, fully automatic introduction of
such tasks can be easily done with general polyhedral transforma-
tion tools such as Pluto, or with similar semi-automatic approaches
such as [24]. The tiles generated by Pluto naturally correspond to
such tasks, as they are defined through a polyhedral-based cost
model with the explicit goal of reducing communication by find-
ing profitable directions for the tiling hyperplanes. (For the rest of
the paper, we will use “task” and “tile” interchangeably.) A sec-
ond critical issue highlighted in [18, 12, 11] is that of asynchronic-
ity: the presence of synchronization points has significant negative
impact on the performance of the parallel implementations. Their
PLASMA project [33] addresses this problem through a run-time
scheduling framework and manual rewriting of LAPACK routines
to use dynamic scheduling for improved scalability.

For automatic transformation frameworks such as Pluto, the
generated parallel code (e.g., OpenMP parallel loops) contains bar-
riers that can lead to excessively constrained inter-task synchro-
nization. This problem cannot be solved by any purely-compile-
time scheduling approach. Thus, the benefits of automatic, general,
and effective parallelization in the polyhedral model cannot be fully
realized. This fundamental weakness of these parallelization ap-
proaches presents a significant challenge, since it is imperative to
effectively schedule the parallel tiles on the processor cores to avoid
load imbalance and resource under-utilization.

We propose a novel fully-automatic approach for generating ef-
ficient parallel code that can be executed on a multicore system in
an asynchronous, load-balanced manner. Our approach generates,
at compile-time, additional program code whose role at run-time is
to generate a directed acyclic graph (DAG) of tasks and their de-
pendencies, and analyze the DAG to facilitate dynamic scheduling
of the tasks on the processor cores for improved scalable execu-
tion. The key insight behind this idea is that the DAG-generating
code can be generated at compile-time by constructing a depen-
dence polytope that captures the inter-tile dependences. The DAG-
generating code is generated in such a way that, at run-time, it
would traverse the points in this polytope. Each such point is es-
sentially a pair of inter-dependent tiles and thus represents an edge
in the task dependence DAG.
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Figure 2. Enabling load-balanced execution on multi-core systems

The developed system is illustrated in Figure 2. The task graph
generator identifies the tile to be executed by a processing unit at
a given time, automatically determines inter-tile dependence infor-
mation, and generates code that at run-time generates a DAG rep-
resenting these dependences. The task scheduler adds code that at
run-time analyzes the task dependence DAG and infers priorities
for dynamically scheduling the tasks. Thus, the input source code is
transformed into code encompassing (1) a task code segment (core
computation code) to be executed by a processor core, (2) a task
dependence DAG generation code segment, and (3) a task schedul-
ing code segment. The run-time execution of the transformed code
generates the DAG, analyzes it to infer priorities to be used for
scheduling, and executes the tiles on the processing units based
on these priorities, maintaining load balance across the processor
cores.

3.1 Task Graph Generator
The task graph generator component is developed on top of Pluto.
As mentioned in Section 2, given an input sequential code, Pluto
generates locality-optimized tiled code. The resulting tiles can be
effectively scheduled on the processing units by using our dynamic
scheduling approach, as opposed to using the compile-time affine
scheduling currently employed by Pluto. This component has two
sub-components: an inter-tile dependence extractor and a DAG
code generator.

3.1.1 Inter-tile Dependence Extractor
A dependence polytope captures dependences involving pairs of
statement instances accessing a common reference. It is represented
as a system of inequalities and equalities capturing the domains
of the statements involving the references, affine functions of the
references, and ordering imposed by the dependence. In the tiled
iteration space, statement instances are represented by higher di-
mensional statement polytopes involving supernode iterators and
intra-tile iterators. Similarly, a dependence between two references
in the tiled iteration space is captured by a higher dimensional de-
pendence polytope – it represents a dependence between iterations
belonging to the same tile or different tiles. The polytope that char-
acterizes dependences between iterations in the tiled domain can be
generated with the following information:

1. Inequalities describing the iteration spaces of the source and
target statement in the original domain.

2. Inequalities defining a tile of the source statement and that
defining a tile of the target statement, given by the affine tiling
transformation from Pluto.

3. Equalities relating the source statement iterators and target
statement iterators with respect to the dependence (h-transformation
of the dependence).

Let Ds and ~xs represent the iteration space matrix and iteration
vector, respectively, of a statement s in original domain. Let DTs
represent the iteration space matrix of the statement in the tiled
domain, derived from the tiling transformation generated by Pluto.
DTs embeds information that defines a tile of the statement (Ts)
and also that defines the original domain of the statement (Ds). Let
~xTs represent the iteration vector of supernode iterators. Then the
domain of the statement in the tiled iteration space is given by

DTs.







~xTs
~xs
~n
1






≥~0, where DTs =

(

Ts 0
0 Ds

)

If there exists a dependence between two statements s and t,
and if H represents the h-transformation of the dependence, then
the dependence polytope in the tiled domain is given by











Ts 0 0 0
0 Ds 0 0
0 0 Tt 0
0 0 0 Dt
0 −Id 0 H











.















~xTs
~xs
~xTt
~xt
~n
1















(

≥~0
=~0

)

In our approach for dynamic scheduling of tiles on multi-core
parallel systems, we are interested in dependences between tiles,
i.e. dependences between iterations belonging to different tiles, to
define a dependence preserving schedule of tiles across processor
cores. The basic idea to derive inter-tile dependence from a depen-
dence polytope in the tiled domain is to project out the dimensions
belonging to intra-tile iterators from the dependence polytope to de-
rive a system of inequalities/equalities involving only inter-tile or
supernode iterators. The projection of intra-tile dimensions is done
using Fourier-Motzkin elimination. This system is further projected
to eliminate tiling dimensions that do not involve in the distribution
of tiles across processor cores. The projection procedure is repeated
for all dependence polytopes in the tiled domain. A projected de-
pendence polytope has the form

(

D′
s 0

0 D′
t

)

.









~xT ′
s

~xT ′
t

~n
1









≥~0
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for (k=0; k<N; k++)
for ( j=k+1; j<N; j++)
S1: a[k][ j ] = a[k][ j ]/ a[k][k ];

for ( i=k+1; i<N; i++)
for ( j=k+1; j<N; j++)

S2: a[ i ][ j ] = a[ i ][ j ] − a[i ][k]∗a[k][ j ];

(a) Original LU code

for (c1=0; c1<=floord(N−2,32); c1++)
for (c2=max(ceild(16∗c1−15,16),0);

c2<=floord(N−1,32); c2++)
for (c3=max(ceild(16∗c1−465,496),

ceild (16∗c1−15,16));
c3<=floord(N−1,32); c3++)

for (c4 =...)
for (c5 =...)

S1(c1,c2,c4,c5)
for (c6 =...)

S2(c1,c3,c2,c4,c6,c5)

(b) Tiled LU code

Figure 3. Example with LU decomposition

(a) Original dependences

t(0,0) t(0,1) t(0,2) t(0,3)

t(1,1) t(1,2) t(1,3)

t(2,2) t(2,3)

t(3,3)

t(0,4)

t(1,4)

t(2,4)

t(3,4)

t(4,4)

(b) Inter-tile dependences

Figure 4. Dependences in the tiled domain for LU code

Example. Figure 3(a) shows sequential code for LU decompo-
sition and Figure 3(b) shows the corresponding tiled code. The tiles
represent the computational tasks, with each task uniquely identi-
fied by its tile number. In the LU code in Figure 3(b), the pair of
values for the outer tile variables (c1,c2) uniquely defines a task.
The dependences in the tiled domain for the LU code are illustrated
in Figure 4(a). The dependences across tiles after the projection of
intra-tile dependences are shown in Figure 4(b).

3.1.2 DAG Code Generator
At the beginning of the run-time execution, the inter-tile depen-
dences are captured and represented in the form of a task depen-
dence DAG. The tiles are vertices of the DAG and the inter-tile de-
pendences are edges between the corresponding vertices. We could
associate a weight with each vertex based on the expected execu-
tion time of the tile and similarly, a weight with each edge based on
the time to communicate data between the incident tasks. However,
in our current implementation, we associate unit weights with the
vertices and zero weights with the edges.

Recall that our goal is an approach to generate code at compile-
time; this code, at run-time, generates the DAG of inter-tile depen-
dences. Since the tiles represent the vertices, the following tech-
nique is used to generate code that creates the vertices in the DAG.
The iteration space polytopes of all statements in the tiled domain,
projected to contain only the supernode iterators, are provided to
CLooG. CLooG scans the union of all polytopes and generates a
loop nest that enumerates all tiles, and hence all vertices of the
DAG. Figure 5(a) shows the compile-time-generated code that (at
run-time) creates the vertices of the inter-tile dependence graph for
the LU decomposition example. Note that this is a fully automatic
and general approach: given any automatically (or manually) con-
structed tiling, as defined by a set of valid tiling hyperplanes, this
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Figure 6. Inter-tile dependence DAG for LU decomposition

technique can directly generate code that enumerates the tiles at
run-time in order to construct the DAG vertices.

The following technique is used to generate code that creates the
edges in the DAG. The inter-tile dependence extractor outputs a set
of projected dependence polytopes (one corresponding to each de-
pendence) that capture the inter-tile dependences. Each dependence
polytope contains (1) supernode iterators of the tile containing the
source statement instance, and (2) supernode iterators of the tile
containing the target statement instance. Each dependence polytope
is scanned using CLooG to create a loop nest with source tile itera-
tors as the outer loops and target tile iterators as the inner loops. In
this manner, all pairs of inter-dependent tiles are enumerated, and
thus all edges of the DAG can be constructed. Figure 5(b) shows
the code that generates edges of the inter-tile dependence graph
corresponding to one of the dependences in the LU decomposition
code. The actual DAG generated at run-time is shown in Figure 6. A
key advantage of this approach is that it is automatic and general. It
takes full advantage of all advances in polyhedral dependence anal-
ysis and code generation, while at the same time enables paralleliz-
ing compilers to go beyond the limitations of purely-compile-time
affine scheduling.
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for (c1=0; c1<=floord(N−2,32); c1++)
for (c2=max(ceild(16∗c1−15,16),0);

c2<=floord(N−1,32); c2++)
dag add vertex (c1, c2, 1.0);

(a) Creating all DAG vertices

for (s1=0;s1<=floord(N−3,32);s1++)
for (s2=max(0,ceild(16∗s1−15,16));

s2<=min(floord(N−2,32),s1+1);s2++)
for ( t1=max(max(ceild(16∗s1−15,16),

ceild (32∗s2−31,32)),0);
t1<=min(min(floord(32∗s2+31,32),s1+1),

floord (N−2,32));t1++)
for ( t2=max(max(max(0,ceild(32∗s1−29,32)),

ceild (16∗s2−15,16)), ceild (16∗t1−15,16));
t2<=floord(N−1,32);t2++)

dag add edge(s1 , s2 , t1 , t2 , 0.0);

(b) Creating all DAG edges for one inter-tile dependence

Figure 5. Code for DAG generation

3.2 Task Scheduler
The task scheduler component adds code that, at run-time, analyzes
the task dependence graph to assign priorities to the tasks and dy-
namically schedule them on cores/processors. The scheduling strat-
egy used in our approach is as follows. Two metrics are associated
with each vertex in the DAG (say G): top level and bottom level.
The top level of a vertex v in G, denoted by topL(v), is defined as
the length of the longest path from the source vertex (i.e., the ver-
tex with no predecessors) in G to v, excluding the vertex weight
of v. The length of a path in G is the sum of the weights of the
vertices and edges along that path. In our current implementation,
since we have associated unit weights with the vertices and zero
weight with the edges, the length of a path is the number of tasks
that need to be executed along that path. The bottom level of a ver-
tex v in G, denoted by bottomL(v), is defined as the length of the
longest path from v to the sink (vertex with no children), including
the vertex weight of v. Any vertex v with maximum value of the
sum of topL(v) and bottomL(v) belongs to a critical path in G.

The tasks are prioritized based on the sum of their top and
bottom levels or just the bottom level, and a priority queue of
ready-to-run tasks is maintained. A task is ready to run if all its
predecessors have completed. Upon completion, each task sets a
flag to denote its completion, computes amongst its children the
set of tasks that are ready to run, and adds them to the priority
queue. Tasks from the priority queue are executed in priority order
on processors/cores as and when they become idle.
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Figure 7. Dynamic schedule vs. affine schedule (time steps)

Example. In the inter-tile dependence DAG for LU decompo-
sition shown in Figure 6, the vertices are marked with bottomL(v).
The figure illustrates the dynamic scheduling strategy based on crit-
ical path analysis that prioritizes tasks based on bottomL(v). The
tasks are scheduled for execution based on the (1) completion of
predecessor tasks, (2) bottomL(v) priority, and (3) availability of
processor core. Figure 7(a) shows the scheduling of the tasks repre-
sented in the DAG in Figure 6 for a dual-core system, using our dy-
namic scheduling approach. As evident from the figure, the ready-
to-run tasks (tasks whose predecessor tasks are completed) with
higher bottomL(v) are given priority and the two cores are fully
utilized as long as there are enough ready tasks to be scheduled.
When two tasks with equal priority are ready for scheduling, the
one at the top of the priority queue is chosen.

Figure 7(b) shows the affine polyhedral schedule produced by
using the default approach in Pluto. The affine schedule for the case
shown in Figure 7(b) is derived using a time schedule θ(i, j) = i+ j,
where (i, j) is the 2-tuple denoting the task number. Tasks are ex-
ecuted in a strictly increasing order of i + j values. Tasks with the
same i+ j value are executed in parallel based on the availability of
processor cores. Comparing the two schedules in Figure 7, it is easy
to see the benefits of effective dynamic scheduling over compile-
time affine scheduling. Furthermore, this result is not specific to
Pluto or to this particular affine schedule — in general, such bene-
fits will be observed when compared with any compile-time affine
scheduling approach.

3.3 Run-time Execution
As explained earlier, at compile-time our approach generates code
that has three segments: 1) the core computation or task code
segment to be executed by a processor core, 2) the dependence
DAG generation code segment, and 3) the task scheduling code
segment. Algorithm 1 lists the steps that are performed at run-time
while executing the code generated by our approach. The steps 5-
10 are performed in parallel asynchronously by threads executing
on different cores. The DAG generation code is executed first to
create the DAG. Then topL(v) and bottomL(v) are calculated based
on critical path analysis to prioritize the tasks/vertices. A priority
queue is maintained to insert tasks based on priority and extract
them for execution. Each parallel process waits for a task to be
ready for execution and executes it by calling the task code. On
completion of the task, all the tasks dependent on it have their wait-
count decremented to indicate the completion of one of the parent
tasks. A successor task is inserted into the priority queue if its wait-
count is zeroed.

4. Experimental Results
This section assesses the effectiveness of the developed automatic
dynamic scheduling approach using two linear algebra computa-
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Algorithm 1 Run-time Execution
1: Execute DAG generation code to create a DAG G
2: Calculate topL(v) and bottomL(v) for each vertex v ∈ G, to

prioritize the vertices
3: Create a Priority Queue PQ
4: PQ.insert ( vertices with no parents in G)
5: while not all vertices in G are processed do
6: taskid = PQ.extract( )
7: Execute taskid // Compute code
8: Remove all outgoing edges of taskid from G
9: PQ.insert ( vertices with no parents in G)

10: end while

tions: LU and Cholesky decomposition. The sequential code for
these computations is first transformed using the Pluto framework
to generate locality-optimized tiled code (code that is tiled for data
locality optimization at the levels of L1 cache and L2 cache), fol-
lowed by processing through our task generator component to iden-
tify the computational tiles and inter-tile dependences, and generate
code to create task dependence DAG, then followed by processing
through our task scheduler component to add code that performs
dynamic scheduling. The DAG is created at run-time and the com-
putation is dynamically scheduled as described in Section 3.2. The
reported performance for the dynamically scheduled versions of
LU and Cholesky include all the overheads due to dynamic DAG
generation as well as dynamic scheduling.

The experiments were conducted on two systems: a) a quad-
core Intel Core 2 Quad Q6600 CPU clocked at 2.4 GHz (1066
MHz FSB) with a 32 KB L1 D cache, 8MB of L2 cache (4MB
shared per core pair), and 2 GB of DDR2-667 RAM, running
Linux kernel version 2.6.22 (x86-64), and b) a dual quad core
Intel Xeon(R) E5345 CPU clocked at 2.33 GHz with each chip
having a 8MB L2 cache (4MB shared per core pair) and 6 GB
RAM, running Linux kernel version 2.6.18. The performance of the
parallel code generated by our approach (which enables effective
dynamic scheduling at run-time) was compared against that of the
parallel code generated by Pluto (which is executed based on static
affine polyhedral schedule). ICC 10.x was the primary compiler
used to compile the Pluto generated code as well as the code
generated by our approach; it was run with -fast -funroll-loops (-
openmp for parallelized code); the -fast option turns on -O3, -ipo, -
static, -no-prec-div on x86-64 processors; these options also enable
auto-vectorization in icc.

An empirical study was carried out on the influence of L2
tile sizes on the statically scheduled (Pluto generated) LU code
and our dynamically scheduled LU code, since L2 tiles are the
ones that are scheduled for execution on different processor cores.
We fixed the problem size as 8K and L1 tile size as 16× 300×
16 (kji) and varied the L2 tile sizes. We found that dynamically
scheduled parallel code always yielded better performance than
statically scheduled parallel code. When the L2 tile sizes were
very small (16×300×16), the performance of both statically and
dynamically scheduled LU was poor, due to high synchronization
overheads. The performance improved as the L2 tile sizes were
increased, up till a point, after which (from tile sizes larger than
or equal to 256 × 600 × 256) the performance of both statically
and dynamically scheduled LU saturated with increasing number
of cores, due to contention for the shared L2 cache. We found
64× 300× 64, 128× 300× 128 and 256× 300× 256 to be good
L2 tile sizes for both statically and dynamically scheduled LU.

Figures 8 and 9 show the performance of LU in GFLOPS and
the parallel speedup achieved on the two experimental systems for
problem size N=8K. The L1 tile size was fixed as 16× 300× 16
and the L2 tile size was fixed as 64× 300× 64. As the L2 cache

is shared between a core-pair and threads are typically scheduled
first to cores that do not share the L2 cache, running an application
on up to 2 cores in the quad core system and up to 4 cores in
the dual quad core system, will not result in sharing of the L2
cache. We see that for these cases, the dynamically scheduled LU
is able to achieve near perfect scaling. Thus dynamic scheduling
is very effective in balancing the load on the cores. Even beyond
2 cores in the quad core system and 4 cores in the dual quad core
system, dynamically scheduled LU is able to achieve significant
performance improvement over statically scheduled LU.

We evaluated the usefulness of dynamic scheduling with an-
other linear algebra computation: Cholesky decomposition. After
an empirical evaluation of tile sizes, we fixed the L1 tile size as
8× 16× 8 (kij) and the L2 tile size as 64× 64× 64. We observed
similar trends as for LU decomposition. Figure 10 shows the paral-
lel speedup achieved for both statically and dynamically scheduled
Cholesky (for a problem size of 8K) on the two experimental sys-
tems. We see that dynamic scheduling enables the parallel applica-
tion to scale very well, achieving close to linear speedups.
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Figure 11. Performance of LU for various task weights

As mentioned earlier, the performance measurements of the
dynamically scheduled versions of LU and Cholesky include the
inter-tile dependence DAG generation overhead and the dynamic
scheduling overhead (due to task priority calculation and priority
queue maintenance). The overheads introduced by our approach
are quite insignificant and do not affect performance. We measured
separately the various overheads involved in our approach using the
LU benchmark. The run-time DAG generation takes only around
0.001%, 0.003%, and 0.005% of the total execution time on 2, 4,
and 8 processors, respectively. The task priority calculation and pri-
ority queue maintenance overhead account for only around 0.013%,
0.023%, and 0.036% of the total execution time on 2, 4, and 8 pro-
cessors, respectively.

We also conducted experiments to assess the robustness of the
dynamic scheduling strategy. Although we do not use empirically
measured performance data to model task/vertex weights, assign-
ing unit weights could still capture the priorities effectively. This
is because the critical path analysis through inter-tile dependences
could effectively capture the task priorities in spite of the less ac-
curate estimate of task weight. Figure 11 shows the performance in
GFLOPS for LU decomposition (for a problem size of 8K) for var-
ious higher/lower weights assigned to the tasks that perform more
computation. As before, the L1 tile size was fixed as 16×300×16
and the L2 tile size was fixed as 64× 300× 64. The performance
remains almost the same for various weights assigned to tasks per-

225



 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5

P
er

fo
rm

an
ce

 (G
FL

O
P

S
)

Number of cores

Pluto
Pluto with Dynamic Scheduling

(a) Absolute performance

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

S
pe

ed
up

Number of cores

Pluto
Pluto with Dynamic Scheduling

(b) Parallel speedup

Figure 8. Performance of LU on 4 cores

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  1  2  3  4  5  6  7  8  9

P
er

fo
rm

an
ce

 (G
FL

O
P

S
)

Number of cores

Pluto
Pluto with Dynamic Scheduling

(a) Absolute performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8  9

S
pe

ed
up

Number of cores

Pluto
Pluto with Dynamic Scheduling

(b) Parallel speedup

Figure 9. Performance of LU on 8 cores

forming more computation, clearly indicating that the scheduling
strategy is robust enough even with unit weights assigned to tasks.

We conclude this section with a discussion on the absolute
performance achieved relative to machine peak. Although the re-
sults presented above demonstrate excellent scalability, the abso-
lute achieved GFLOPS performance is currently lower than the ma-
chine peak by over a factor of 2. The single-node performance of
the generated tiled code is only about half of the machine peak
because vectorization is sub-optimal. The Pluto system currently
does not incorporate much sophistication in the approach to vec-
torization, relying primarily on the vectorization capability of the
icc compiler. Work is in progress to implement a much more effec-
tive vectorization strategy using vector intrinsics. Another approach
that we plan to pursue is that of using tuned kernels such as BLAS
routines. The key idea is that of automatically recognizing when
the tiled code generated by Pluto can be replaced by pre-optimized
kernels. The dominant operation for Cholesky and LU decomposi-
tion is the multiply-add, and the core of the tiled code generated by
Pluto is essentially a DGEMM. The use of DGEMM to replace the

tiled code generated by Pluto requires the automatic separation and
extraction of full rectangular tiles from the general polyhedral tiles
and the identification of suitable pre-optimized kernels to substitute
for the full tiles.

5. Related work
A number of works that use dependence abstractions weaker than
those in polyhedral models have addressed loop parallelization
[10, 2, 17, 16, 48]. In the context of loop parallelization in poly-
hedral models, several scheduling-driven works have developed
techniques for finding minimum latency schedules or schedules
with maximum fine-grained parallelism [20, 21, 17, 25]; these ap-
proaches are not aimed at coarse-grain parallelization or locality
enhancement. Some works have used fine-grain schedules to de-
termine loop structures which are then tiled to create coarse-grain
tasks [20, 21, 25]. In contrast to these, partitioning-driven par-
allelization is addressed in works of Lim et al. [32, 31, 30] and
our work on Pluto [34, 8, 7, 9, 6]. Note that due to synchroniza-
tion/communication costs on most modern parallel architectures, at
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Figure 10. Performance of Cholesky

least one level of coarse-grained parallelism is desirable, in addition
to enhanced locality. The Pluto approach is the first to explicitly
model tiling in a polyhedral transformation framework, which al-
lows us to address two key issues: (i) effective extraction of coarse-
grained parallelism, and (ii) data locality optimization.

Nevertheless, depending on the structure of the loops and their
parallelization, the tiled output code from any of the above ap-
proaches may still suffer from load-imbalance; therefore, dynamic
scheduling of tiles is key to improving performance. The approach
we pursue here has some similarities to the inspector/executor ap-
proach used in runtime compilation [42, 43, 35] in that an analyzer
is created at compile-time for execution at run-time to facilitate op-
timized execution. However, a fundamental difference is that run-
time compilation approaches typically use inspectors to obtain es-
sential information (e.g., dependence information) that can only be
known at run-time. In contrast, in our context, all dependence in-
formation is completely known at compile-time for the affine com-
putations that we address. The problem is that the affine schedule
generated by the Pluto framework (or any other existing automatic
parallelization framework) is overly constraining due to the use of a
static parallel loop structure with implicit barrier synchronization.
The same problem exists with the parallel implementations in LA-
PACK routines, as highlighted by the recent research from the Uni-
versity of Tennessee [18, 12, 11]. The solution approach we pur-
sue has been inspired by that work, with the main difference being
that we seek to generate the dynamically self-scheduling code com-
pletely automatically by compiler transformations from sequential
code for the computation.

Several efforts have targeted dynamic run-time parallelization
[13, 28, 39, 41] as well as speculative parallelization [14, 38, 40].
The basic difference between these approaches and our work is
that we use dynamic scheduling to improve performance of loop
computations that are amenable to compile-time characterization
of dependences.

A plethora of work has been published on the topic of DAG
scheduling [1, 45, 44, 23, 27, 26]. Although more sophisticated
DAG scheduling algorithms could have been used in our work, we
found that a straightforward bottom-level based critical-path dy-
namic DAG scheduling algorithm was very effective. The focus of
our work has not been on exploring alternative scheduling algo-
rithms, but on developing an approach to automatic compile-time

generation of DAG generation code to be executed at run-time to
facilitate dynamic load balancing of tiled parallel code.

6. Conclusions
The parallel code generated by automatic parallelization approaches
for multi-statement input programs with statements of different di-
mensionalities suffers from excessive synchronization in the form
of barriers, leading to poor scalability on multi-core systems due to
load imbalance. In this paper, we have developed a fully-automatic
parallelization approach that can transform input sequential codes
with affine dependences for asynchronous, load-balanced paral-
lel execution. We have described an approach that generates, at
compile-time, additional program code whose role at run-time is to
dynamically extract inter-tile data dependences, and dynamically
schedule the parallel tiles on the processor cores to improve load
balance for effective parallel execution on multi-core systems. The
effectiveness of the approach has been demonstrated through two
linear algebra computations: LU and Cholesky decomposition.
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