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Abstract

In this chapter, we discuss static analysis of the security of a system. First, we discuss the background

on what types of static analysis is feasible in principle and then move on to what is practical. We next

discuss static analysis of buffer overflow and mobile code followed by access control. Finally, we discuss

static analysis of information flow expressed in a language that has been annotated with flow policies.

1 Introduction

Analysing a program for security holes is an important part of current computing landscape as

security has not been an essential ingredient in a program’s design for quite some time. With the

critical importance of a secure program becoming clearer in the recent past, designs based on an

explicit security policy are likely to gain prominence.

Static analysis of a program is one technique to detect security holes. Compared to monitoring

executions runtime (which may not have the required coverage), a static analysis - even if incom-

plete due to loss of precision - gives potentially an analysis on all runs possible instead of just the

ones seen so far.

However, security analysis of an arbitrary program is extremely hard. First, what security

means is often unspecified or underspecified. Either the definition is too overly strict and can-

not cope with the “common sense” requirement, or too broad and not useful. For example, one

definition of security is through the notion of “non-interference”[26]. If it is very strict, even cryp-

toanalytically strong encryption and decryption does not qualify as secure as there is information

flow from encrypted text to plain text[27]. If it is not very strict, by definition, some flows are

not captured that are important in some context for achieving security and hence again not se-

cure. For example, if electromagnetic emissions are not taken into account, the key may be easily

compromised[37]. A model of what security means is needed and this is by no means an easy

task[38]. Schneider[25] has a very general definition: a security policy defines a binary partition

of all (computable) sets of executions: those that satisfy and those that do not. This is general
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enough to cover access control policies (a program’s behavior on an arbitrary individual execution

for an arbitrary finite period), availability policies (behavior on an arbitrary individual execution

over an infinite period) and information flow (behavior in terms of the set of all executions).

Secondly, the diagonalization trick is possible and many analyses are undecidable. For example,

there are undecidable results with respect to viruses and malicious logic[34]: it is undecidable

whether an arbitrary program contains a computer virus. Similarly, there exist viruses for which

no error-free detection algorithm exists.

Recently, there has been some interesting results on computability classes for enforcement

mechanisms[25] with respect to execution monitors, program rewriting and static analysis. Ex-

ecution monitors intervene whenever execution of an untrusted program is about to violate the

security policy being enforced. They are typically used in operating systems using structures such

as access control lists or used when executing interpreted languages by runtime type checking. It

is possible to rewrite a binary so that every access to memory goes through a monitor. While this

can introduce overhead, optimization techniques can be used to reduce the overhead. In many

cases, the test can be determined to be not necessary and removed by static analysis. For example,

if a reference to a memory address m has already been checked earlier, it may not be necessary for

a later occurrence.

Program rewriting modifies the untrusted program before execution to make it incapable of

violating the security policy. An execution monitor can be viewed as a special case of program

rewriting but Hamlen et al[25] point out certain subtle cases. Consider a security policy that makes

halting a program illegal; an execution monitor cannot enforce this policy by halting as this would

be illegal! There are also classes of policies in certain models of execution monitors that cannot be

enforced by any program rewriter.

As is to be expected, the class of statically enforceable policies is the class of recursively-

decidable properties of programs (class Π0 of the arithmetic hierarchy): a static analysis has to be

necessarily total (i.e. terminate) and return safe or unsafe. If precise analysis is not possible, we

can relax the requirement by being conservative in what it returns (i.e. tolerate false positives).

Execution monitors are the class of co-recursively enumerable languages (class Π1 of the arithmetic
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hierarchy)1.

A system’s security is specified by its security policy (such as access control or information flow

model) and implemented by mechanisms such as physical separation or cryptography2. Consider

access control. An access control (AC) system guards access to resources whereas an information

flow model classifies information to prevent disclosure. Access control is a component of security

policy, while cryptography is one technical mechanism to effect the security policy. Systems have

employed basic access control since timesharing systems began (’60) (eg. Multics, Unix). Simple

access control models for such “standalone” machines assumed the universe of users known resulting

in the scale of model being “small”. A set of access control moves can unintentionally leak a right

(i.e. give access when it should not be). If it is possible to analyse the system and ensure that

such a result is not possible, the system can be said to be secure. But theoretical models inspired

by these systems (the most well known being the Harrison, Ruzzo, Ullman (HRU) model) showed

“surprising” undecidability results[23] chiefly due to the unlimited number of subjects and objects

possible. Technically, in this model, it is undecidable whether a given state of a given protection

system is safe for a given generic right. However, the need for automated analysis of policies was

small in the past as the scale of the systems was small.

Information flow analysis, in contrast to access control, concerns itself with the downstream

use of information once obtained after proper access control. Carelessness in not ensuring proper

flow models has resulted recently in the encryption system in HD-DVD and BluRay disks to be

compromised (the key protecting movie content is available in memory)3.

Overt models of information flow specify the policy how data should be used explicitly whereas

covert models use “signalling” of information through “covert” channels such as timing, electro-

magnetic emissions, etc. Note that the security weakness in the recent HD-DVD case is due to

1A security policy P is co-recursively enumerable if there exists a Turing machine M that takes an arbitrary

execution monitor EM as an input and rejects it in finite time if ∼ P (EM) otherwise M(EM) loops forever.
2While cryptography has rightfully been a significant component in the design of large scale systems, its relation

to security policy, esp its complementarity, has not often been brought out in full. “If you think cryptography is

the solution to your problem, you don’t know what your problem is,” Roger Needham.
3The compromise of the security system DeCSS in DVDs was due to cryptanalysis but in the case of HD-DVD

it was simply improper information flow.
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improper overt information flow. Research on some overt models of information flow such as Bell

and LaPadula[4] was initiated around the 60’s, inspired by the classification of secrets in the mili-

tary. Since operating systems are the inspiration for work in this area, models of secure operating

systems were developed such as C2, B2, etc.[61]. Work on covert information flow progressed in

the 70’s. However, the work on covert models of information flow in proprietary operating systems

(eg. DG-UNIX) was expensive and too late that it could not be used on the by then obsolescent

hardware. Showing that Trojan horses did not use covert channels to compromise information was

found to be “ultimately unachievable” [39].

Currently, there is a considerable interest in studying overt models of information flow as the

extensive use of distributed systems and recent work with widely available operating systems such

as SELinux and OpenSolaris has expanded the scope of research. The scale of model has become

“large” with the need for automated analysis of policies being high.

Access control and information flow policies can both be statically analysed, with varying

effectiveness depending on the problem. Abstract interpretation, slicing and many other compiler

techniques can also be used in conjunction. Most of the static analyses induce a constraint system

that needs to be solved to see if security is violated. For example, in one buffer overflow analysis[33],

if there is a solution to a constraint system, then there is an attack. In another analysis in language

based security, non-existence of a solution to the constraints is an indication of a possible leak of

information.

However, static analysis is not possible in many cases[19] and has not yet been used on large

pieces of software. Hence, exhaustive checking using model checking[7] is increasingly being used

when one wants to gain confidence about a piece of code. In this chapter, we consider model

checking as a form of static analysis. We will discuss access control on Internet that uses model

checking (Section 4.4). We will also discuss this approach in the context of SELinux where we

check if a large application has been given only sufficient rights to get its job done[49].

In spite of the many difficulties for analysing the security of a system, policy frameworks such

as access control and information flow analysis, and mechanisms such as cryptography have been

used to make systems “secure”. However, for any such composite solution, we need to trust certain
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entities in the system such as the compiler, the BIOS, the (Java) runtime system, the hardware,

digital certificates, etc.: essentially the “chain of trust” problem. That this is a tricky problem

has been shown in an interesting way by Ken Thompson[24]; we will discuss it below. Hence the

need for a “small” trusted computing base (TCB): all protection mechanisms within a system

(hardware, software, firmware) for enforcing security policies.

In the past (early ’60’s), operating systems were small and compilers larger in comparison. The

TCB could justifiably be the OS, even if uncomfortably larger than one wished. In today’s context,

the compilers need not be as large as current operating systems (for eg. Linux kernel or Windows

is many millions lines of code) and a TCB could profitably be the compiler. Hence, a compiler

analysis of security is meaningful nowadays and likely to be the only way large systems (often

a distributed system) can be crafted in the future. Using a top level security policy, it may be

possible to automatically partition the program so that the resulting distributed system is secure

by design[28].

To illustrate effectiveness of static security analysis, we first discuss a case where static analysis

fails completely (Ken Thomson’s Trojan Horse). We then outline some results on the problem of

detecting viruses, and then a case study where static analysis can be in principle be very hard

(equivalent to cryptanalysis in general) but is actually much simpler due to a critical implementa-

tion error. We will also briefly touch upon obfuscation that exploits difficulty of analysis.

We then discuss static analysis of buffer overflows, loading of mobile code and access control and

information flow, illustrating the latter using Jif[53] language on a realistic problem. We conclude

with likely future directions in this area of research.

1.1 A “Dramatic Failure” of Static Analysis: Ken Thompson’s “Trojan

Horse”

Some techniques to defeat static analysis can be deeply effective; we summarize Ken Thompson’s

ingenious “Trojan Horse” trick[24] in a compiler that uses self-reproduction, self-learning and self-

application. We follow his exposition closely.

Firstly, self-reproduction is possible; for example, one can construct a self-reproducing program
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such as ((lambda x. (list x x)) (lambda x. (list x x))). Second, it is possible to teach

a compiler (written in its own language) to compile new features (the art of bootstrapping a

compiler): this makes “self-learning” possible. We again give Ken Thompson’s example to illustrate

it. Let us say that a lexer knows about ’\n’ (newline) but not ’\v’ (vertical tab). How does

one teach it to compile ’\v’ also? Let the initial source be:

c=next();

if (c !=’\\’) return(c);

c=next();

if (c !=’\\’) return(’\\’)

if (c =’n’) return(’\n’)

Adding to the compiler source

if (c =’v’) return(’\v’) //error

and using previous compiler binary does not work as that binary does not know about ’\v’.

However, the following works:

if (c =’v’) return(11)

Now a new binary (from the new source using the old compiler binary) knows about ’\v’ in a

portable way! Now we can use it to compile the previously uncompilable statement:

if (c =’v’) return(’\v’)

The compiler has “learned”. Now, we can introduce a Trojan Horse into login program that has a

backdoor to allow a special access to log in as any user:

compile(char *s) { (* compiler main that accepts s as input (a program) *)

if match(s, "pattern_login") {

(* ‘‘Trojan’’ compile for a login program in the system*)

compile("bug_login"); return

}

... (* normal compile *)

7



}

But this is easily detectable (by examining the source). To make this not possible, we can add a

second Trojan Horse aimed at the compiler:

if match(s, "pattern_compiler") {

(* ‘‘Trojan’’ compile for a compiler program in the system*)

compile("bug_compiler"); return

}

Now we can code a self-reproducing program that reintroduces both Trojan Horses into the

compiler with a learning phase where the buggy compiler binary with 2 Trojan Horses now reinserts

it into any new compiler binary compiled from clean source! The detailed scheme is as follows: first

a clean compiler binary (A) is built from a clean compiler source (S). Next, as part of the learning

phase, a modified compiler source (S’) can be built that incorporates the bugs. The logic in S’

looks at the source code of any program submitted for compilation and, say by pattern matching,

decides whether a program submitted is a login or a compiler program. If it decides that it is one

of these special programs, it reproduces4 one or more Trojan horses (as necessary) when presented

with a clean source. Let the program S’ be compiled with A. We have a new binary A’ that

reinserts the two Trojans on any clean source!

The virus exists in the binary but not in the source. This is not possible to discern unless

the history of the system (the sequence of compilations and alterations) is kept in mind. Static

analysis fails spectacularly!

1.2 Detecting Viruses

As discussed earlier, the virus detection problem is undecidable. A successful virus encapsulates

itself so that it cannot be detected; the opposite of “self-identifying data”. For eg, a very clever

virus would put logic in I/O routines so that any read of suspected portions of disk returns the

original “correct” information! A polymorphic virus inserts “random” data to vary signature.

4It is easiest to do so in the binary being produced as the compiled output.
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More effectively, it can create a random encryption key to encrypt rest of virus and store the key

with the virus.

1.2.1 Cohen’s results

Cohen’s impossibility result states that it is impossible for a program to perfectly demarcate a line,

enclosing all and only those programs that are infected with some virus: There is no algorithm

that can properly detect all possible viruses[34]: ∀Alg.∃V irus.Alg does not detect V irus. For

any candidate computer virus detection algorithm A, there is a program p(pgm): if A(pgm) then

exit; else spread. Here, “spread” means behave like a virus. We can diagonalize this by setting

pgm=p and a contradiction follows immediately as p spreads iff not A(p).

Similarly, Chess and White[35] show that there exists a virus which no algorithm perfectly

detects i.e. with no false positives: ∃V irus.∀Alg.Alg does not detect V irus. Also, there exists

a virus which no algorithm loosely-detects, i.e. claims to find the virus but infected with some

other virus: ∃V irus.∀Alg.Alg does not loosely-detect V irus. In other words, there exist viruses for

which, even with virus analyzed completely, no program that detects just that virus with no false

positives. Further, another Chess & White’s impossibility result states that there is no program

to classify programs only those with a virus V and not include any program without any virus.

Furthermore, there are interesting results concerning polymorphic viruses: these viruses gener-

ate a set of other viruses that are not identical to itself but related to it in some way (for example,

be able to reproduce the next one in sequence). If the size of this set is greater than 1, call the set

of viruses generated the viral set S.

An algorithm A detects a set of viruses S iff for every program p, A(p) terminates and returns

TRUE iff p is infected with some virus V in S. If W is a polyvirus, for any candidate W -detection

algorithm C, there is a program s(pgm) that is an instance of W :

if subroutine_one(pgm) then exit, else {

replace text of subroutine_one with a random program;

spread; exit; }

subroutine_one: return C(argument)
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This can be diagonalized by pgm=s resulting in a contradiction: if C(s) true exit; otherwise

polyvirus.

Hence, it is clear that there are serious limits to static analysis.

1.3 A Case Study for Static Analysis: GSM Security Hole

We will now attempt to situate static analysis with other analyses, using the partitioning attack[37]

on GSM hashing on a particular implementation as an example. GSM uses COMP128 algorithm

for encryption. A 16B (128b) key of subscriber (available with the base station) along with a 16B

challenge from the base station) is used to construct a 12B (96b) hash. The first 32b is sent as

response to the challenge and the rest 64b used as the session key. The critical issue is that there

should be no leakage of the key in any of the outputs; this includes any electromagnetic leakages!

during the computation of the hash. The formula for computation of hash (it has a butterfly

structure) is as follows:

//X is 32B (16B key || 16B challenge)

//Tj[r] is a lookuptable of 8-j bits value with r rows:

//alg uses T0[512], T1[256], T2[128], T3[64], T4[32]

for j=0..4

for k=0..2^j -1

for l=0..2^(4-j) -1

m=l+k*2^(5-j)

n=m+2^(4-j)

y=(X[m]+2*X[n]) mod 2^(9-j)

z=(2*X[m]+X[n]) mod 2^(9-j)

X[m]=Tj[y]

X[n]=Tj[z]

If we expand y in the expression for X[m], we have

X[m]=Tj[(X[m]+2*X[n]) mod 2^(9-j)]
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A simple-minded flow analysis will show that there is direct dependence of the EM leakage

on key; hence, this is not information flow secure. However, cryptographers, using the right

“confusion” and “diffusion” operators such as the above code, have shown that the inverse can

be very difficult to compute. Hence, even if very simple static analysis clearly points out the flow

dependence of the EM leakage on the key, it is not good enough to crack the key. However, even if

the mapping is cryptanalytically strong, there are often some “implementation” bugs that can give

away the key. One attack is possible if one does not follow the following principle[37] of statistical

independence (or more accurately non-interference that will be discussed later):

Relevant bits of all intermediate cycles and their values should be statistically independent of

the inputs, outputs and sensitive information.

Normally, those bits that emit high EM emissions are good candidates for analysis. One set of

candidates are the array and index values as they need to be amplified electrically for addressing

memory. They are therefore EM sensitive whereas other internal values may not be so.

Due to the violation of this principle, a cryptographically strong algorithm may have an im-

plementation that leaks secrets. For example, many implementations use 8b microprocessors as

COMP128 is optimized for them, so the actual implementation for T0 is 2 tables T00, T01 (each

256 entries):

//X is 32B (16B key || 16B challenge)

//Tj[r] is a lookuptable of 8-j bits value with r rows:

//alg uses T0[512], T1[256], T2[128], T3[64], T4[32]

for j=0..4

for k=0..2^j -1

for l=0..2^(4-j) -1

m=l+k*2^(5-j)

n=m+2^(4-j)

y=(X[m]+2*X[n]) mod 2^(9-j)

z=(2*X[m]+X[n]) mod 2^(9-j)

if (y<256) X[m]=Tj0[y] else Tj1[y-256] // old: X[m]=Tj[y]
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if (z<256) X[m]=Tj0[z] else Tj1[z-256] // old: X[n]=Tj[z]

If the number of intermediate lookups from tables T00 or T01 have statistical significance, then

due to the linearity of the index y with respect to R for the first round, some information can be

gleaned about the key. The technique of differential cryptanalysis is based on such observations.

In addition, if it is possible to know when access changes from one table (say, T00) to another

(T01) by changing R, then the R value where it changes is given by K + 2*R=256, from which X,

the first byte of the GSM key, can be determined.

In general, we basically have a set of constraints, such as

0 ≤ x + 2y1 ≤ 127

128 ≤ x + 2y2 ≤ 256

where y1 and y2 are two close values that map the index into different arrays (T0 or T1)5.

If there is a solution to these Diophantine equations, then we have an attack. Otherwise,

no. Since the cryptographic confusion and diffusion operations determine the difficulty (esp, with

devices such as S-boxes in DES), in general the problem is equivalent to the cryptanalysis prob-

lem. But if we assume that the confusion and diffusion operations are linear in subkey and other

parameters (as in COMP128), we just need to solve a set of linear diophantine equations[29].

What we can learn from the above is the following: We need to identify EM sensitive variables.

Other values can be “declassified”; even if we do not take any precautions, we can assume they

cannot be observed from an EM perspective. We need to check the flow dependence of the EM

sensitive variables (i.e. externally visible) on secrets that need to be safeguarded.

Recently, there has been work that implies that success or failure of branch prediction presents

observable events that can be used to crack encryption keys.

The above suggests the following problems for study:

• Automatic downgrading of “insensitive” variables.

• What is the minimal declassification to achieve desired flow properties?

5in general, l ≤ f(a, b) ≤ u,... with f being an affine function for tractability.
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1.4 Obfuscation

Given that static analyses are often hard, there are some applications that use it to good effect.

An example is the new area of “obfuscation” of code so that it cannot be reverse-engineered easily.

Obfuscation is the attempt to make code “unreadable” or “unintelligible” in the hope that it cannot

be used by competitors. This is effected by performing semantic preserving transformations so that

automatic static analysis can reveal nothing useful. In one instance, control flow is intentionally

altered so that it is difficult to understand or use it by making sure that any analysis that can help

in unravelling code is computationally intractable (for eg, PSPACE-hard or NP-hard). Another

example is introducing aliases intentionally as certain alias analysis problems are known to be hard

(if not undecidable), esp in the interprocedural context. Since it has been shown that obfuscation

is, in general, impossible[30], static analysis in principle could be adopted to undo obfuscation

unless it is computationally hard.

2 Static Analysis of Buffer Overflows

Since the advent of the Morris worm in 1988, buffer overflow techniques to compromise systems

has been widely used. Most recently, the SQL slammer worm in ’03, using a small UDP packet

(376B), compromised 90% of all target machines worldwide in less than 10 minutes.

Since buffer overflow on a stack can be avoided, for example, by preventing the return ad-

dress from being overwritten by the “malicious” input string, array bounds checking of the input

parameters by the callee is one technique. Due to the cost of this check, it is useful to explore com-

pile time approaches that eliminate the check through program analysis. Wagner[31] uses static

analysis (integer range analysis) but it has false positives due to imprecision in pointer analysis,

interprocedural analysis, etc. and lack of information on dynamically allocated sizes.

CCured[36] uses static analysis to insert runtime checks to create a type-safe version of C

program. CCured classifies C pointers into SAFE, SEQ or WILD pointers. SAFE pointers require

only a null check. SEQ pointers require a bounds check as these are involved in pointer arithmetic

but the pointed object is known statically while WILD ones require a bounds check as well as a
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runtime check as it is not known what type of object it points to at runtime. For such dynamically-

typed pointers, we cannot rely on the static type; instead, we need, for example, run-time tags to

differentiate pointers from non-pointers.

Ganapathy et al. [33] solve linear programming problems arising out of modelling C string

programs as linear programs to identify buffer overruns. Constraints result from buffer declarations,

assignments and function call/returns. C source is first analysed by a tool that builds a program

dependence graph for each procedure, an interprocedural CFG, ASTs for expressions, along with

points-to and side-effect information. A constraint generator then generates 4 constraints for

each pointer to a buffer (between max/min buffer allocation and max/min buffer index used), 4

constraints on each index assignment (between previous and new values as well as for the highest

and lowest values), 2 for each buffer declaration, etc. A taint analysis next attempts to identify

and remove any uninitialized constraint variables to make it easy for the constraint solvers.

Using LP solvers, the best possible estimate of the number of bytes used and allocated for

each buffer in any execution is computed. Based on these values, buffer overruns are inferred.

Some false positives are possible due to the flow-insensitive approach followed; these have to be

manually resolved. Since infeasible linear programs are possible, they use an algorithm to identify

irreducibly inconsistent sets. After such sets of constraints are removed, further processing is done

before solvers are employed. Their approach also employs techniques to make program analysis

context sensitive.

Ashcraft and Engler[48] use a “metacompilation” (MC) approach to catch potential security

holes. For example, any use of “untrusted input” 6 could be a potential security hole. Since a

compiler potentially has information about such input variables, a compiler can statically infer

some of the problematic uses and flag them. To avoid hardwiring some of these inferences, the MC

approach allows implementers to add rules to the compiler in the form of high-level system-specific

checkers. Jaeger et al.[49] use a similar approach to make SELinux aware of 2 trust levels to make

information flow analysis possible; as of now, it is not possible. We will discuss this further in

6Examples in the Linux kernel code are system call parameters, routines that copy data from user space, and

network data.
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Section 4.3.

3 Static Analysis of Safety of Mobile Code

The importance of safe executable code embedded in webpages (such as Javascript), applications

(as macros in spreadsheets), OS kernel (as drivers, packet filters[50], profilers such as DTrace[51]),

cellphones or smartcards is becoming more and more important everyday, With unsafe code (espe-

cially one that is a Trojan), it is possible to get elevated privileges that can ultimately compromise

the system. Recently, Google Desktop search[32] could be used to compromise a machine (to make

all of its local files available outside, for example) in the presence of a malicious Java applet as

Java allows an applet to connect to its originating host,

The most simple model is the “naive” sandbox model where there are restrictions such as

limited access to local filesystem for the code but this is often too restrictive. A better sandbox

model is that of executing the code in a virtual machine implemented either as an OS abstraction

or as a software isolation layer and using emulation. We will discuss the latter here. In the latter

solution, the safety property of the programming language and the access checks in the software

isolation layer are used to guarantee security.

Since OO languages such as Java and C# have been designed for making possible “secure”

applets, we will consider OO languages here. Checking whether a method has access permissions

may not be local. Once we use a programming language with function calls, the call stack has

information on the current calling sequence. Depending on this path, a method may or may not

have the permissions. Stack inspection can be carried out to protect the callee from the caller by

ensuring that the untrusted caller has the right credentials to call a higher privileged or trusted

callee. However, it does not protect the caller from the callee in case of callback or event-based

system. We need to compute the intersection of permissions of all methods invoked per thread and

base access based on this intersection. This protects in both the directions.

Static analysis can be carried out to check security loop holes introduced by extensibility in OO

languages. Such holes can be introduced through subclassing that override methods that check for

corner case important for security. We can detect potential security holes by using a combination
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of model checking and abstract interpretation: first, compute all the possible execution histories;

pushdown systems can be used for representation. Next, use temporal logic to express properties

of interest (such as: a method from an applet cannot call a method from another applet). If

necessary, use abstract interpretation and model checking to check properties of interest.

Another approach is that of the proof carrying code (PCC). Here, mobile code is accompanied by

a proof that the code follows the security policy. As a detailed description of the above approaches

for the safety of mobile code is given in the 1st edition of this handbook[18], we will not discuss it

here further.

4 Static Analysis of Access Control Policies

Butler Lampson[6] introduced access control as a mapping from {entity, resource, op} to {permit,

deny} (as commonly used in operating systems). Later models have introduced structure for

entities such as roles (“role based access control”) and introduced a noop to handle the ability to

model access control modularly by allowing multiple rules to fire: {role, resource, op} to {permit,

deny, noop}. Another significant advance is access control with anonymous entities: the subject

of trust management, which we discuss in Section 4.4.

Starting from the early simple notion, theoretical analysis in the HRU system[23] of access

control has the following primitives:

• create subject s: creates new row, column in access control matrix (ACM)

• create object o: creates new column in ACM

• destroy subject s: deletes row, column from ACM

• destroy object o: deletes column from ACM

• enter r into A[s, o]: adds r rights for subject s over object o

• delete r from A[s, o]: removes r rights from subject s over object o

Adding a generic right r where there was not one is “leaking”. If a system S, beginning in

initial state s0, cannot leak right r, it is safe with respect to the right r. It turns out with the

above primitives, there does not exist an algorithm for determining whether a protection system S
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with initial state s0 is safe with respect to a generic right r. A Turing machine can be simulated

by the access control system by the use of the infinite two-dimensional access control matrix to

simulate the infinite Turing tape, using the conditions to check the presence of a right to simulate

whether a symbol on the Turing tape exists, adding certain rights to keep track of where the end

of the corresponding tape is, etc.

Take grant models[1], in contradistinction to HRU models, are decidable in linear time[1].

Instead of generic analysis, specific graph models of granting and deleting privileges, etc. are used.

Koch et al.[44] have proposed an approach in which safety is decidable in their graphical model if

each graph rule either deletes or adds graph structure but not both. However, the configuration

graph is fixed.

Recently, there has been work on understanding and comparing the complexity of DAC (Graham-

Denning) and HRU models in terms of a state transition systems[46]. HRU systems have been

shown to be not as expressive as DAC. In the Graham-Denning model, if a subject is deleted, the

objects owned are atomically transferred to its parent. In a highly available access control system,

however, there is usually more than one parent (a DAG structure rather than a tree) and we need

to decide how the “orphaned” objects are to be shared. We need to specify further models (for eg,

dynamic separation of duty). If subject is the active entity or leader, further modelling is neces-

sary. The simplest model usually assumes a fixed static alternate leader but this is inappropriate

in many critical designs. The difficulty in handling a more general model is that leader election

also requires resources that are subject to access control. But for any access control reconfigura-

tion to take place, authentications and authorizations have to be frozen for a short duration till

the reconfiguration is complete. Since leader election itself requires access control decisions as it

requires network, storage and other resources, we need a special mechanism to keep these outside

the purview of the freeze of access control system. The modelling thus becomes extremely complex.

This is an area for investigation.

17



4.1 Case Studies

4.1.1 Firewalls

Firewalls are one widely known access control mechanism. A firewall examines each packet that

passes through the entry point of a network and decides whether to accept the packet and allow

it to proceed or to discard the packet. A firewall is usually designed as a sequence of rules; each

rule is of the form <pred> → <decision> where <pred> is a boolean expression over the different

fields of a packet, and the <decision> is either accept or discard. Designing the sequence of rules

for a firewall is not any easy task as it needs to be consistent, complete, and compact. Consistency

means that the rules are ordered correctly, completeness means that every packet satisfies at least

one rule in the firewall, and compactness means that the firewall has no redundant rules. Gouda

and Liu[47] have examined the use of “firewall decision diagrams” for an automated analysis and

present polynomial algorithms for achieving the above desirable goals.

4.1.2 Setuid Analysis

The access control mechanism in Unix-based systems is based critically on the setuid mechanism.

This is also known to be a source of many privilege escalation attacks if this feature is not used

correctly. Since there are many variations of setuid in different Unix versions, the correctness of a

particular application using this mechanism is difficult to establish across multiple Unix versions.

Static analysis of an application along with model of the setuid mechanism is one attempt at

checking the correctness of an application.

Chen, Wagner and Dean[20] develop a formal model of transitions of the user IDs involved in

the setuid mechanism as a finite state automaton (FSA) and develop techniques for automatic

construction of such models. The resulting FSA are used to uncover problematic uses of the

Unix API for uid-setting system calls, to identify differences in the semantics of these calls among

various Unix systems, to detect inconsistency in the handling of user IDs within an OS kernel,

and to check the proper usage of these calls in programs automatically. As an Unix-based system

maintains per-process state (e.g., the real, effective, and saved uids) to track privilege levels, a

suitably abstracted FSA (by mapping all user ids into a single “non-root” composite id) can be
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devised to maintain all such relevant information per state. Each uid-setting system call then leads

to a number of possible transitions; FSA transitions are labelled with system calls. Let this FSA

be called the setuid-FSA. The application program can also be suitably abstracted and modelled

as an FSA (the program FSA) that represents each program point as a state and each statement

as a transition. By composing the program FSA with the setuid-FSA, we get a composite FSA.

Each state in the composite FSA is a pair of one state from the setuid-FSA (representing a unique

combination of the values in the real uid, effective uid, and saved uid) and one state from the

program FSA (representing a program point). Using this composite FSA, questions such as the

following can be answered:

• Can the setuid system call fail? This is possible if an error state in the setuid-FSA part in a

composite state can be reached.

• Can the program fail to drop the privilege? This is possible if a composite state can be

reached that has a privileged setuid-FSA state but the program state should be unprivileged

at that program point.

• Which parts of an application run at elevated privileges? By examining all the reachable

composite states, this question can be answered easily.

4.2 “Dynamic” Access Control

Recent models of access control are declarative using rules that encode the traditional matrix

model. An access request is evaluated using the rules to decide whether access it to be provided

or not. It also helps to separate access control policies from business logic.

Dougherty et.al.[42] use Datalog to specify access control policies. At any point in the evolution

of the system, there are facts (“ground terms”) that interact with the policies (“datalog rules”); the

resulting set of deductions is a fixpoint that can be used to answer queries whether an access is to

be allowed or not. In many systems, there is also a temporal component to access control decisions.

Once an event happens (eg. a paper is assigned to reviewer), certain accesses get revoked (eg. the

reviewer cannot see the reviews of other reviewers of the same paper until he has submitted his

own) or allowed. We can therefore construct a transition system with edges being events that have
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a bearing on the access control decisions. The goal of analysis is now either safety or availability (a

form of liveness): namely, is there some accessible state in the dynamic access model which satisfies

some boolean expression over policy facts? These questions can be answered efficiently as any fixed

Datalog query can be computed in polynomial time in the size of the database, and the result of

any fixed conjunctive query over a database Q can be computed in space O(log| Q |)[42, 22].

Analysis of access control by abstract interpretation is another approach. Given a language for

access control, we can model leakage of a right as an abstract interpretation problem. Consider a

simple language with assignments, conditionals and sequence (“;”). If A is an user, let [A, stmt]s

represent whether A can execute stmt in state s. Also, let r(q,A)s mean that A can read q in state

s and w(p,A)s means A can write p in state s. Then we have the following interpretation:

[A, p=q]s = r(q,A)s and w(p,A)s

[A, if c then p else q]s = r(c,A)s and ((c and [A,p]s) or (not c and [A,q]s))

[A, (a; b)]s = [A, a]s and [A, b]s′

where s′ is the new state after executing a.

Here, A can be a set of users also. Next, if [A, prog](startstate) = 1, then A can execute prog.

The access control problem now becomes: Does there exist a program P that A can execute and

the program also computes the value of some forbidden value and writes it to a location that A can

access? With HRU type of models, the set of programs to be examined is essentially unbounded and

we have undecidability. However, if we restrict the programs to be finite, decidability is possible.

It is also possible to model “dynamic access control” by other methods such as using pushdown

systems[40], graph grammars[5], or frameworks such as “formal concept analysis and concept

lattices”[21] but we will only discuss the access control problem on the Internet that can be modelled

using pushdown systems.
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4.3 Retrofitting Simple MAC Models for SELinux

Since SELinux is easily available, we will use SELinux as an example for discussing access control.

In the past, the lack of such operating systems made research difficult; they were either classified

or very expensive.

Any machine hosting some services on the net should not get totally compromised if there is

a break-in. Can we isolate the breach to those services and not to affect rest of the system? It

is possible to do so if we can use “mandatory access policies” (MAC) rather than the standard

“discretionary access policies” (DAC). In a MAC, the system decides how you share your objects

whereas in a DAC you can decide how you share your objects. A break-in into a DAC system has

the potential to usurp the entire machine whereas in a MAC system the kernel or the system still

validates each access according to a policy loaded beforehand.

For example, in some recent Linux systems (eg. Fedora Core 5/6 that is based on Security

Enhanced Linux or SELinux) that employ MAC, there is a “targeted” policy where every access

to a resource is allowed implicitly but deny rules can be used to prevent accesses. By default, most

processes run in an “unconfined” domain but certain daemons or processes7 (“targeted ones”) run

in “locked down” domains after starting out as “unconfined”. If cracker breaks into apache and

gets a shell account, it can run only with the privileges of the “locked down” daemon and thus

rest of the system is usually safe. The rest of the system is not safe only if there is a way to effect

a transition into the “unconfined” domain. With the more stringent “strict policy”, also available

in Fedora Core 5/6 that implicitly denies everything and “allow” rules are used to enable accesses,

it is even more difficult.

Every subject (process) and object (e.g. file, socket, IPC object, etc) has a security context that

is interpreted only by security server. Policy enforcement code typically handles security identifiers

(SIDs); SIDs are nonpersistent and local identifiers. SELinux implements a combination of:

• Type Enforcement and (optional) MultiLevel Security: Typed models have been shown to be

more tractable for analysis. Type enforcement requires that the type of domains and objects

be respected when making transitions to other domains or when acting on objects of a certain

7httpd, dhcpd, mailman, mysqld, named, nscd, ntpd, portmap, postgresql, squid, syslogd, winbind, snmpd
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type. It also some preliminary support for models that have information at different levels of

security. The bulk of the rules in most policies in SELinux is for type enforcement.

• Role Based Access Control (RBAC): Roles for processes. Specifies domains that can be

entered by each role and specifies roles that are authorized for each user with an initial

domain associated with each user role. It has the ease of management of RBAC with fine

granularity of type enforcement.

The security policy is specified through a set of configuration files.

Overt flows transfer data directly; these are often high-bandwidth and easily controllable by a

policy. Covert flows are indirect; e.g., file existence or CPU usage; these are often low-bandwidth

and difficult to control in SELinux. Examples of overt flows:

• Direct Information Flow: eg: allow subject t object t:file write. Here, the domain

subject t is being given the permission to write to a file of type object t.

• Transitive Information Flow: eg: allow subject a t object t : file write; allow subject b t

object t : file read. Here, one domain is writing to an object of type file that is being

read by another domain.

However, one downside is that very fine level control is needed. Every major component such as

NFS or X needs extensive work on what permissions needs to be given before it can do its job. As

the default assumption is “deny”, there could be as many as 30,000 allow rules! There is a critical

need for automated analysis. If the rules are too lax, we can potentially have a security problem.

If we have too few (too strict), there can be a failure of program at runtime as the program does

not have enough permissions to carry out its job. Just as in software testing, we need to do code

coverage analysis. In the simplest case, without alias analysis or interprocedural analysis, it is

possible to look at the static code and decide what objects are needed to be accessed. Assuming

that all the paths are possible, one can use “abstract interpretation” or “program slicing” to

determine the needed rules. However, these rules will necessarily be conservative. Without proper

alias analysis in the presence of aliasing, we will have to be even more imprecise; similar is the case

in the context of interprocedural analysis.
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Ganapathy[8] discuss automated authorization policy enforcement for user-space servers and

the Linux kernel. Here, legacy code is retrofitted with calls to a reference monitor that checks

permissions before granting access (MAC). For example, information “cut” from a sensitive window

in an X server should not be allowed to be “pasted” into an ordinary one. Since manual placing of

these calls is error-prone, an automated analysis based on program analysis is useful. First security

sensitive operations to be checked (“MAC’ed”) are identified. Next, for each such operation, the

code-level constructs that must be executed are identified by a static analysis as a conjunction

of several code-level patterns in terms of their ASTs. Next, locations where these constructs are

potentially performed have to be located and, where possible, the “subject” and “object”. Next

the server or kernel is instrumented with calls to a reference monitor with subject, object and op

triple as the argument, with a jump to the normal code on success or with call to a code that

handles the failure case.

We now discuss the static analysis for automatic placement of authorization hooks, given, say,

the kernel code and the reference monitor code[9]. Assuming no recursion, the call graph of the

reference monitor code is constructed. For each node in the call graph, a summary is produced. A

summary of a function is the set of (pred, op) pairs that denotes the condition under which op can

be authorized by the function. For computing the summary, a flow and context-sensitive analysis

is used that propagates a predicate through the statements of the function. For example, at a

conditional statement with q as the condition, the “if” part is analysed with pred ∧ q, and the

“then” part by pred ∧ ¬q. At a call site, each pair in the summary of the function is substituted

with the actuals of the call and the propagation of the predicate continues. When it terminates,

we have a set of pairs as summary. Another static analysis on the kernel source recovers the set of

conceptual operations that may be performed by each kernel function. This is done by searching

for combinations of code patterns in each kernel function. For each kernel function, it then searches

through a set of idioms for these code patterns to determine if the function performs a conceptual

operation; an idiom is a rule that relates a combination of code patterns to conceptual operations.

Once the summary of each function h in the reference monitor code and the set of conceptual

operations (S) for each kernel function k is available, finding the set of functions hi in the monitor
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code that guards k reduces to finding a cover for the set S using the summary of functions hi.

Another tractable approach is for a less granular model but finer than non-MAC systems. For

example, it is typically the case in a large system that there are definitely forbidden accesses and

allowable accesses but also many “gray” areas. “Conflicting access control subspaces” [10] result

if assignments of permissions and constraints that prohibit access to a subject or a role conflict.

Analysing these conflicts and resolving them, an iterative procedure, will result in a workable

model.

4.4 Model Checking Access Control on Internet: Trust Management

Access control is based on identity. However, on the Internet, there is usually no relationship

between requestor and provider prior to request (though cookies are one mechanism used). When

users are unknown, we need 3rd party input so that trust, delegation and public keys can be

negotiated. With public-key cryptography, it becomes possible to deal with anonymous users as

long as they have a public key: authentication/ authorization is now possible with models such

as SPKI/SDSI[41] (Simple public key infrastructure/Simple Distributed Security Infrastructure)

or trust management. An issuer authorizes specific permissions to specific principals; these cre-

dentials can be signed by the issuer to avoid tampering. We can now have credentials (optionally

with delegation) with the assumption that locally generated public keys do not collide with other

locally generated public keys elsewhere(!). This allows us to exploit “local namespaces”: any local

resource controlled by a principal can be given access permissions to others by signing this grant

of permission using the public key.

We can now combine access control and cryptography into a larger framework with logics for

authentication/authorization and access control. For example, an authorization certificate (K, S,

D, T, V ) in SPKI/SDSI can be viewed as an ACL entry, where keys or principals represented by

the subject S are given permission, by a principal with public key K, to access a “local” resource T

in the domain of the principal with public key K. Here, T is the set of authorizations (operations

permitted on T), D is the delegation control: whether S can in turn give permissions to others and

V is the duration during which the certificate is valid.
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Name certificates define the names available in an issuer’s local name space whereas authoriza-

tion certificates grant authorizations, or delegate the ability to grant authorizations. A certificate

chain provides proof that a client’s public key is one of the keys that has been authorized to access

a given resource either directly or transitively, via one or more name-definition or authorization-

delegation steps. A set of SPKI/SDSI name and authorization certificates defines a “pushdown

system”[40] and one can “model check” many of the properties in polynomial time. Queries in

SPKI/SDSI[41] can be as follows:

• Authorized access: Given resource R and principal K, is K authorized to access R? Given

resource R and name N (not necessarily a principal), is N authorized to access R? Given

resource R, what names (not necessarily principals) are authorized to access R?

• Shared access: For two given resources R1 and R2, what principals can access both R1 and

R2? For two given principals K1 and K2, what resources can be accessed by both K1 and

K2?

• Compromisation assessment: Due (solely) to the presence of maliciously or accidentally is-

sued certificate set C0 ⊂ C, what resources could principal K have gained access to? What

principals could have gained access to resource R?

• Expiration vulnerability: If certificate set C0 ⊂ C expires, what resources will principal K be

prevented from accessing? What principals will be excluded from accessing resource R?

• Universally guarded access: Is it the case that all authorizations that can be issued for a given

resource R must involve a cert signed by principal K? Is it the case that all authorizations

that grant a given principal K0 access to some resource must involve a cert signed by K?

Other models of trust management such as RT (“RBAC based Trust management”) [43] are

also possible. The following rules are available in the base model RT[]:

• Simple Member: A.r → D. A asserts that D is a member of A’s r role.

• Simple Inclusion: A.r → B.r1. This is delegation from A to B.

The model RT[∩] adds to RT[] the following “Intersection Inclusion” rule: A.r → B1.r1 and B2.r2.

This adds partial delegations from A to B1 and to B2. The model RT[⇐] adds to RT[] the following
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“Linking Inclusion” rule: A.r → A.r1.r2. This adds delegation from A to all the members of the

role A.r1. RT[∩,⇐ ] is all of the above 4 rules. The kinds of questions that we would like to ask

are:

• Simple safety (Existential): does a principal have access to some resource in some reachable

state?

• Simple availability: in every state, does some principal have access to some resource?

• Bounded safety: in every state, is the number of principals that have access to some resource

bounded?

• Liveness (Existential): Does there exist a reachable state in which no principal has access to

a given resource?

• Mutual Exclusion: In every reachable state, are 2 given properties (or two given resources)

mutually exclusive, i.e., no principal has both properties (or access to both resources) at the

same time?

• Containment: In every reachable state, does every principal that has one property (e.g.,

has access to a resource) also have another property (e.g., is an employee)? Containment

can express safety or availability (e.g., by interchanging the two example properties in the

previous sentence).

The complexity of queries such as simple safety, simple availability, bounded safety, liveness, and

mutual exclusion analysis for RT[∩,⇐] is decidable in poly time in size of state. For contain-

ment analysis[43], it is P for RT[], coNP-complete for RT[[∩], PSPACE-complete for RT[⇐], and

decidable in coNEXP for RT[∩,⇐].

However, permission-based trust management cannot authorize principals with a certain prop-

erty easily. For eg.[45], to give a 20% discount to students of a particular institute, the book store

can delegate discount permission to the institute key. The institute has to delegate its key to each

student with respect to “bookstore” context; this can be too much burden on the institute. Or, the

institute creates a new group key for students and delegates it to each student key but this requires

that the institute create a key for each meaningful group; this is also too much burden again! One
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answer to this problem is attribute-based approach: it combines RBAC and trust management.

The requirements in an attribute-based system[45] are decentralization, provision of delegation

of attribute authority, inference, attribute-based delegation of attribute authority, conjunction of

attributes, attributes with fields (expiry, age, ...) with the desirable features of expressive power,

declarative semantics, and tractable compliance checking. Logic programming languages such

as Prolog or, better, Datalog can be used for a delegation logic for ABAC: this combines logic

programming with delegation and possibly with monotonic or non-monotonic reasoning. With

delegation depth and complex principals such as k out of n (static/dynamic) thresholds, many

more realistic situations can be addressed.

Related to the idea of attribute based access control and to allow for better interoperability

across administrative boundaries systems, an interesting approach is the use of proof carrying

authentication[11]. An access is allowed if a proof can be constructed for an arbitrary access pred-

icate by locating and using pieces of the security policy that have been distributed across arbitrary

hosts. It has been implemented as modules that extend a standard web server and web browser

to use proof-carrying authorization to control access to web pages. The web browser generates

proofs mechanically by iteratively fetching proof components until a proof can be constructed.

They provide for iterative authorization, by which a server can require a browser to prove a series

of challenges.

5 Language Based Security

As discussed earlier, current operating systems are much bigger than current compilers and there-

fore it is worthwhile to make the compiler part of the TCB than an OS. If it is possible to express

security policies using a programming language that can be statically analysed, a compiler as part

of a TCB makes eminent sense.

The main goal of language based security is to check the non-interference property, i.e., to

detect all possible leakages of some sensitive information through computation, timing channels,

termination channels, I/O channels, etc. But non-interference property is too restrictive to express

security policies, since many programs do leak some information. For example, sensitive data after
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encryption can be “leaked” to outside world, which is agreeable with respect to security as long as

the encryption is effective. Hence, non-interference property has to be relaxed by some mechanisms

like declassification.

Note that static approaches cannot quantify the leakage of information as the focus is whether

a program violated some desired property with respect to information flow. It is possible to use a

dynamic approach that quantifies the amount of information leaked by a program as the entropy

of the program’s outputs as a distribution over the possible values of the secret inputs, with the

public inputs held constant[19]. Noninterference has a entropy of 0. Such a quantitative approach

will often be more useful and flexible than a strict static analysis approach, except that analysis

has to be repeated multiple times for coverage.

One approach to static analysis for language based security has been to use type inference

techniques, which we discuss next.

5.1 The type-based approach

Type systems establish safety properties (invariants) that hold throughout the program whereas

noninterference requires that two programs give the same output inspite of different input values

for its “low” values. Hence, a noninterference proof can be viewed as a bisimulation. For simpler

languages (discussed below), a direct proof is possible but for languages with advanced features

such as concurrency and dynamic memory allocation, noninterference proofs are more complex.

Before we proceed to discuss the type-based approach, we will briefly describe the lattice model of

information flow.

The lattice model of information flow started with the work of Bell and LaPadula[4] and

Denning[52]. Every program variable has a static security class (or label); the security label of

each variable can be global (as in early work) or local for each owner as in the decentralized label

model (DLM) developed for Java in Jif[59].

If x and y are variables, and there is (direct) information flow from x to y, it is permissible iff

the label of x is less than that of y. Indirect flows arise from control flow such as if (y=1) then

x=1 else x=2. If label of x ≤ label of y, some information of y flows into x (based on whether x
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is 1 or 2) and should be disallowed. Similarly, if (y=z) then x=1 else w=2, the lub of the levels

of y and z should be ≤ glb of the levels of x and w. To handle this situation, we can assign a label

to the program counter (pc). In the above example, we can assign the label of the lub to pc just

after evaluating the condition; the condition now that needs to be satisfied is that both the arms

of the if should have atleast the same level as the pc.

Dynamic labels are also possible. A method may take parameters and the label of the parameter

itself could be an another formal. In addition, array elements could have different labels based on

index and hence an expression could have a dynamic label based on the runtime value of its index.

Checking that the static label of an expression is atleast as restrictive as the dynamic label of

any value it might produce is now one goal of analysis (preferably static). Similarly, in the absence

of declassification, we need to check that the static label of a value is atleast as restrictive as the

dynamic label of any value that might affect it. Due to the limitations of analysis, static checking

may need to use conservative approximations for tractability.

Denning proposed program certification as a lattice-based static analysis method[52] to verify

secure information flow. However, soundness of the analysis was not addressed. Later work such as

Volpano and his colleagues[55] showed that a program is secure if it is “typable”, with the “types”

being labels from a security lattice. Upward flows are handled through subtyping. In addition to

checking correctness of flows, it is possible to use “type inference” to reduce the need to annotate

the security levels by the programmer. Type inference computes the type of any expression or

program. By introducing type variables, a program can be checked if it can be typed by solving

the constraint equations (inequalities) induced by the program. In general, simple type inference

is equivalent to first-order unification whereas in the context of dependent types it is equivalent to

higher-order unification.

For example, consider a simple imperative language with the following syntax[55]:

(phrases) p::= e | c

(expr) e::= x | l | n | e arith e’ | e relop e’

(cmds) c::= e:=e’ | c; c’ | if e then c else c’ |

while e do c | let var x:=e in c
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Here, l denotes locations (i.e., program counter values), n integers, x variables and c constants.

The types in this system are types of variables, locations, expressions and commands; these are

given by one of the partially ordered security labels of the security system. A cmd has a type tcmd

only if it is guaranteed that every assignment in cmd is made to a variable whose security class is

t or higher. The type system for security analysis is as follows (L and T are location and type

environments respectively):

L;T ` n : t An integer constant can be typed

L;T ` x : t if T (x) = t

L;T ` l : t if L(l) = t

L;T ` e : t

L;T ` e′ : t
L;T ` e relop e′ : t

L;T ` e : t

L;T ` e′ : t
L;T ` e arithop e′ : t

L;T ` x : t

L;T ` e′ : t
L;T ` x := e : tcmd

L;T ` c : tcmd

L;T ` c′ : tcmd

L;T ` c; c′ : tcmd

L;T ` e : t

L;T ` c : t

L;T ` c′ : t
L;T ` if e then c else c′ : t
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L;T ` e : t

L;T ` c : t

L;T ` while e do c : t

Consider the rules for assignment above. In order for information to flow from e′ to e, both

have to be at the same security level. However, upward flow is allowed: for secrecy, for example,

if e is at a higher level and e′ is at a lower level. This is handled by extending the partial order

by subtyping and coercion: the lowlevel (“derived type”) is smaller (for secrecy) in this extended

order than the highlevel (“base type”). Note that the extended relation has to be contravariant in

the types of commands tcmd.

It can be proved[55] that if an expression e can be given a type t in the above type system,

then, for secrecy, only variables at level t or lower in e will have their contents read when e is

evaluated (“no read up”). For integrity, every variable in e stores information at integrity level t.

If a command has the property that every assignment within c is made to a variable whose security

class is atleast t, then the confinement property for secrecy says that no variable below level t is

updated in c (“no write down”). For integrity, every variable assigned in c can be updated by a

type t variable.

Soundness of the typesystem induces the non-interference property, i.e. a high value cannot

influence any lower value (or, information does not leak from high values to low values).

Information flow in multithreaded programs has been studied by Volpano[56]. The above

type system does not guarantee noninterference; however, by restricting the label of all the

while loops and its guards to low, the property is restored. Abadi has modelled encryption as

declassification[57] and presented the resulting type system.

Myers and his colleagues have developed static checking for DLM-based Jif language[58, 59]

while Pottier and his colleagues[54] have developed OCaml-based FlowCAML. We discuss the Jif

approach in some detail.
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5.2 Java Information Flow (Jif) Language

Jif is Java based information flow programming language that adds static analysis of information

flow for improved security assurance. Jif is mainly based on static type checking. Jif also performs

some run-time information-flow checks.

Jif is based on decentralized labels. A “Label” in Jif defines the security level, represented by a

set of policy expressions separated by semicolon. A policy expression {owner : reader1, reader2, ...}

means that principal owner wants to allow labeled information to flow to at most the principals

readeri. Unlike MAC model, these labels contains fine-grained policies, which have an advantage

of being able to represent decentralized access control. These labels are called decentralized labels

because they enforce security on behalf of the owning principals, not on behalf of an implicitly

centralized policy specifier. The policy {o1 : r1, r2; o2 : r2, r3} specifies that both o1, o2 own the

information with each allowing either r1, r2 or r2, r3 respectively. For integrity, another notation

is adopted.

Information can flow from label L1 to label L2 only if L1 v L2 (i.e. L1 is less restrictive than

L2), where v defines a preorder on labels in which the equivalence classes form a join semilattice.

To label an expression (such as w+x), a join operator is defined as the lub of the labels of the

operands, as it has to have a secrecy as strong as any of them. In the context of control flow, such

as if cond then x=... else x=..., we also need the join operator. To handle implicit flows

through control flow, each program visible location is given an implicit label.

A principal hierarchy allows one principal to actfor another. This helps in simplifying the

policy statements in terms of representation of groups or roles. For example, suppose principal

Alice actsfor Adm and principal Bob actsfor Adm, then in the following code whatever value

that Adm has is also readable by Alice and Bob.

void examplePrincipalHierarchy(){

int{Alice:} a;

int{Bob:} b;

int{Adm:} c = 10;

a = c; /* is valid stmt */

32



b = c; /* is valid stmt */

}

The declassification mechanism gives the programmer an explicit escape hatch for releasing

information whenever necessary. The declassification is basically carried out by relaxing the policies

of some labels by principals having sufficient authority. For example:

void exampleDeclassification() where authority (Alice) {

int{Alice:} x;

int{Alice:Bob} y;

int{Bob:} a;

int{Bob:Alice} b;

/*Here PC has label {}*/

if (x > 10) {

/*Here PC has label {Alice:}*/

declassify(y = 25, {Alice:Bob});

/*stmt ‘‘y = 25" is declassified from {Alice:} to {Alice:Bob}*/

/*valid because has Alice’s authority*/

}

/*Here PC has again the label {}*/

b = declassify(a, {Bob: Alice});

/*invalid because doesn’t have Bob’s authority*/

}

JiF has label polymorphism. This allows the expression of code that is generic with respect to

the security class of the data it manipulates. For example,

void exampleLP(int{Alice:;Bob:}i){

...

/*Assures a security level upto {Alice:;Bob:}*/

}

To the above function (which assures a security level upto {Alice:;Bob:}) one can pass any
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integer variable having one of the following labels:

• {}

• {Alice:Bob}

• {Alice:}

• {Bob:}

• {Alice:;Bob:}

Jif has automatic label inference: this makes it unnecessary to write many type-annotations.

For example, suppose the following function is called (which can only be called from a program

point with label atmost {Alice:;Bob:}) from a valid program point, “a” will get a default label of

{Alice:;Bob:}.

void exampleALI{Alice:;Bob:}(int i){

int a;

/* Default label of ‘‘a "’ is {Alice:;Bob:}*/

}

Run-time label checking and first-class label values in Jif make it possible to discover and to

define new policies at run time. Run-time checks are statically checked to ensure that information

is not leaked by the success or failure of the run-time check itself. Jif provides a mechanism for

comparing runtime labels, and also a mechanism for comparing runtime principals. For example,

void m(int{Alice:pr} i, principal{} pr){

int{Alice:Bob} x;

if (Bob actsfor pr) {

x = i;

/* OK, since {Alice:pr} <= {Alice:Bob}*/

}

else {

x = 0;

}
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}

void n(int{*lbl} i, label{} lbl){

int{Alice:} x;

if (lbl <= new label {Alice:}) {

x = i;

/* OK, since {*lbl} <= {Alice:Bob}*/

}

else {

x = 0;

}

}

Note that in the above function n(...), *lbl represents an actual label held by the variable lbl.

Whereas just lbl inside a label represents label of the variable lbl (i.e. {} here).

Labels and principals can be used as first-class values represented at runtime. These dynamic

labels and principals can be used in the specification of other labels, and used as the parameters

of parameterized classes. Thus, Jif’s type system has dependent types. For example,

class C[label L] { ... }

...

void m() {

final label lb = new label {Alice: Bob};

int{*lb; Bob:} x = 4;

C[lb] foo = null;

/*Here ‘‘lb " acts as first-class label*/

C[{*lb}] bar = foo;

}

Note that, unlike in Java, method arguments in Jif are always implicitly final. Some of the
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limitations of Jif are that there is no support for Java Threads, nested classes, initializer blocks

or ’native’ methods.

Interaction of Jif with existing Java classes is possible by generating Jif signatures for the

interface corresponding to these java classes.

5.3 A case study: VSR

The context of this work8 is the security of archival storage. The central objective usually is to

guarantee the availability, integrity, and secrecy of a piece of data at the same time. Availability

is usually achieved through redundancy, which reduces secrecy (it is sufficient for the adversary

to get one copy of the secret). Although the requirements of availability and secrecy seem to be

in conflict, an information-theoretic secret sharing protocol has been proposed by A. Shamir in

1979 [12]. But this algorithm does not provide data integrity. Loss of shares can be tolerated upto

a threshold but not to arbitrary modifications of shares.

A series of improvements have therefore been proposed over time to build secret sharing pro-

tocols resistant to many kinds of attacks. The first one takes into account the data-integrity

requirement, and leads to Verifiable Secret Sharing (VSS) algorithms [13, 14]. The next step is to

take into account mobile adversaries that can corrupt any number of parties given sufficiently am-

ple time. It is difficult to limit the number of corrupted parties on the large time scales over which

archival systems are expected to operate. An adversary can corrupt a party but redistribution

can make that party whole again (in practice, this happens, for example, following a system re-

installation). Mobile adversaries can be tackled by means of proactive secret sharing (PSS) wherein

redistributions are performed periodically. In one approach, the secret is reconstructed and then

redistributed. However, this causes extra vulnerability at the node of reconstruction. Therefore,

another approach, viz., redistribution without reconstruction is used [15]. A combination of VSS

and PSS is Verifiable Secret Redistribution (VSR); one such protocol is proposed in [16]. In [17],

we proposed an improvement of this protocol relaxing some of the requirements.

Modelling the above protocol using Jif can help us to understand the potential and the diffi-

8This is joint work with a former student S. Roopesh.
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culties of Jif static analysis. We now discuss the design of simplified VSR[16] protocol:

• Global Values: This class contain the following variables that are used for generation and

verification of shares and subshares during reconstruction and redistribution phases.

– (m,n): m - threshold number of servers required for reconstruction of secret, and n -

total number of servers to which shares are distributed.

– p: prime used for Zp, r : prime used for Zr

– g : Diffie-Hellman exponentiator

– KeyID : Unique for each secret across all clients.

– ClientID : ID of the owner of the secret.

• Secret: This class contain secret ’s value (i.e. secret itself), polynomial used for distribution

of shares, N[] - array of server IDs to which the shares are distributed.

• Points2D: This class contain two values x and f(x), where f is the polynomial used for

generating the shares (or sub-shares). Used by “Lagrangian Interpolator” to reconstruct

secret (or shares from sub-shares).

• Share: This class contains an immutable original share value (used to check whether

shares are uncorrupted or not), and redistributing polynomial (used for redistribution of

this share to new access structure).
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• SubShare: Same as “Share” class, except the share value actually contain sub-share value

and no redistributing polynomial.

• SubShareBox: This class keeps track of the sub-shares from a set of valid servers (i.e.

“B[]” servers) in redistribution phase. This is maintained by all servers belonging to the new

(m’,n’)-access structure to which new shares are redistributed.

• Client: This class contains zero or more secrets and is responsible for initial distribution of

shares and reconstruction of secret from valid set of servers.

• Server: This class maintains zero or more shares from different clients and is responsible

for redistribution of shares, after client (who is the owner of the secret corresponding to this

share) has approved for the redistribution.

• Node: Each node contains two units, one Client and the other Server (having the same

ids as this Node). On message reception from the reliable communication (GCS: Group

Communication System) interface GCSInterface, this node extracts the information inside

the message and gives it to either the client or the server, based on the message type.

• GCSInterface: This communication interface class is responsible for acting as an interface

between underlying reliable messaging system (say, the Ensemble GCS[60] system), user-

requests, and Client and Server.

• UserCommand (Thread): Handles three types of commands from the user:

– Distribution of user’s secret S to (m,n) - access structure,

– Redistribution from (m,n) - access structure to (m’,n’) - access structure, and

– Reconstruction of secret S.

• SendMessage (Thread): This class packetizes the messages (from “Node”) (depends on

the communication interface), then either sends or multicast these packets to the destination

node(s).

• Attacker: This class is responsible for attacking the servers, getting their shares and corrupt-

ing all their valid shares (i.e. changing the “y” values in Points2D class to arbitrary values).

This class also keeps all valid shares it got by attacking the servers. It also reconstructs all
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possible secrets from the shares collected. Without loss of generality, we assume that atmost

one attacker can be running in the whole system.

• AttackerNode: Similar to Node, but instead of Client and Server instances, it contains only

one instance of “Attacker” class.

• AttackerGCSInterface: Similar to GCSInterface class.

• AttackerUserCommand: Handles two types of commands from the attacker:

– Attack server Si, and

– Construct all possible secrets from collected valid shares.

We do not dwell on some internal bookkeeping details during redistribution and reconstruction

phases. Figure 1 gives the three phases of simplified VSR protocol. The “distribution” and

“reconstruction” phases almost remain the same. Only “redistribution phase” is slightly modified,

where client acts as manager of the redistribution process. The following additional assumptions

are also being made:

• No “Abort” or “Commit” messages from servers

• In “redistribution phase”, client, who is the owner of the secret corresponding to this redis-

tribution process, will send the “commit” messages, instead from the redistributing servers.

• Attacker is restricted to only attacking the servers and thereby getting all the original shares

and corrupting them which are held by the servers.

• No “reply and DoS attacks’

5.3.1 Jif analysis on simplified VSR

In this section, we discuss an attempt to do Jif analysis on simplified VSR implementation and

its difficulties. As shown in the figure 2, every “Node” (including the “AttackerNode”) runs with

“root” authority (who is above all and can “actfor” all principals). Every message from and out of

the network will have an empty label (as we rely on underlying Java Ensemble for cryptographically

perfect end-to-end and multicast communication). The “root” (i.e. Node) receives the message

from the network. Based on the message type, “root” will appropriately (classify or) declassify
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the contents of the message, and handles them either by giving to client or server. Similarly for all

outgoing messages from Client/Server to communication network would be properly declassified.

First, the communication interface used (Java Ensemble) uses some “native” methods to contact

ensemble-server9. And in order to do asynchronous communication we use threads in our VSR

implementation. Since Jif does not support Java Threads and native methods, Jif analysis

cannot be done at this level. Hence we have to restrict the Jif analysis above the communication

layer10.

Next, let us proceed to do static analysis on the remaining part using the Jif compiler. Consider

the Attacker Node (see figure 2). The attacker node (running with root authority) classifies all

content going to the principal “Attacker” with the label - {Attacker :}. If the attacker has

compromised some server, he would get all the valid shares belonging to that server. Hence, all

shares of a compromised “Server” output from the communication interface (GCS) goes to the

attacker node first. Since it is running with “root” authority, and sees that shares are semi-

sensitive, hence, (de)classifies these shares to {Server:}. In order that these shares by read by the

attacker, the following property should hold: {Server:} v {Attacker:}

But since the “Attacker” principal does not actsfor this “Server” (principal), the above relation

does not hold, hence the attacker cannot read the shares. The Jif compiler detected this as an

error. However, if we add actsfor relation from “Attacker”(principal) to this “Server” (principal)

(i.e. Attacker actsfor Server), he could read the shares. In this case, the Jif compiler does not

report any error, implying that the information flow from {Server:} to {Attacker:} is valid (since

{Server:} v {Attacker:} condition holds).

VSR has a threshold property: if the number of shares (or subshares) is more than the threshold,

the secret can be reconstituted. What this implies is that any computation knowing less than the

threshold number of shares cannot interfere with any computation that has access to more than this

9ensemble-server is a daemon serving group communication.
10Due to this separation, we encountered a problem with the Jif analysis even if we want to abstract out the lower

GCS layer. Some of the classes (like “Message” class) are common to both upper and lower layers but they are

compiled by two different compilers (Jif and Java) that turn out to have incompatible .class files for the common

classes.
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threshold. We need a threshold set non-interference property. This implies that we can atmost

declassify less than any set of threshold number of shares. Since such notions are not expressible

in Jif, even if mathematically proved as in [16], more powerful dependent type systems have to

be used in the analysis. Since modern type inference is based on explicit constraint generation

and solving, it is possible to model the threshold property through constraints but solving such

constraints will have a high complexity. Fundamentally, we have to express the property that any

combination of subshares less than the threshold number cannot interfere (given that the number

of subshares available is more than this number); either, every case has to be discharged separately

or symmetry arguments have to be used. Approaches such as model checking (possibly augmented

with symmetry-based techniques) are indicated.

There is a also a difficulty in Jif to label each array element with different values. In “Client”

class, there is a function that calculates and returns the shares of a secret. Its skeleton code is as

follows:

1 Share[] getShares(int[] ServerID){

2 Share{Client:}[]{Client:} shares = new Share{Client:}[]{Client:};

3 int n = ServerIDs.length;

4 for (int i = 0 ; i < n ; i++){

5 shares[i] = {Client:ServerServerID[i]} polynomial(ServerID[i]);

6 }

7 return shares;

8 }

In line 2, “shares” is an array of type “Share” having a label of {Client:} for both array variable

and individual elements of this array. Line 5 calculates different shares for different servers based

on ServerIDs, and assigning a different label of {Client: ServerServerID[i] } for each of these shares.

But, Jif does not allow for different labels for different elements of an array; it only allows a common

label for all elements of an array. If this is possible, we should ensure that accessing some array
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element does not itself leak some information about the index value.

There are many other difficulties for using Jif to do analysis currently such as the need to

recode a program in Jif. The basic problem is the (post-hoc) analysis after an algorithm has

already been designed. What is likely to be more useful11 is an explicit security policy before the

code is developed[28] and then use Jif or similar language to express and check these properties

where possible. McCamant and Ernst[19] argue that Jif-type static analysis is still relatively rare

and no “large” programs have yet been ported to Jif or FlowCaml. They instead use a fine-grained

dynamic bit-tracking analysis to measure the information revealed during a particular execution.

6 Future Work

Current frameworks such as Jif have not been sufficiently developed. We foresee the following

evolution:

• The analysis in Section 5.1 so far has assumed that typing can reveal interesting properties.

This needs to be extended to a more general static analysis that deals with values in addition

to types as well as when the language is extended to include arrays, etc. Essentially, the

analysis should be able to handle array types with affine index functions. This goes beyond

the analysis possible with type analysis.

• Incorporate pointers and heaps in the analysis. Use dataflow analysis on lattices but with

complex lattice values (such as regular expressions, etc.). Or, use shape analysis techniques.

• Integrate static analysis (such as abstract interpretation, compiler dataflow analysis) with

model checking to answer questions such as “what is the least/most privilege a variable

should have to satisfy some constraint”. This may be coupled with techniques such as CE-

GAR (“counterexample guided abstraction refinement”)[2]. This however requires consider-

able machinery. Consider for example, a fully developed system such as the SLAM software

model checking[3]. It uses counterexample-driven abstraction of software through “boolean”

programs (or abstracted programs) using model creation (c2bp), model checking (bebop) and

11In the verification area, it is increasingly becoming clear that checking the correctness of finished code is an

order of magnitude more difficult than intervening in the early phases of the design.
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model refinement (newton). SLAM builds on the OCaml programming language, and uses

dataflow and pointer analysis, predicate abstraction and symbolic model checking, and tools

such as CUDD, a SAT solver and a SMT theorem prover[3]. Many such analyses have to be

developed for static analysis of security properties.
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